• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistemas

Sistemas

Mensagempor Jansen » Dom Mai 10, 2009 00:01

Olá! sou novo por aqui. enfim!
Tenho duvida nessa questão: Já tentei varias vezes, bom sei que ela pode ser resolvida por "escalonamento"´. O que eu devo estar confundindo é na hora de cancelar uma icognita x,y ou z.

1º) Sabendo que (x,y,z) é solução do sistema.

x+y+z=1
x-y+2z=3 , o valor de x²+y²+z² é:
2x+3y-z=1


Obrigado, pela atenção estarei fazendo novas perguntas!
Obs: não sei por "Chaves" do lado esquerdo do sistema.
Jansen
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Mai 09, 2009 23:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: formado

Re: Sistemas

Mensagempor Molina » Dom Mai 10, 2009 14:09

Bem-vindo, Jansen.

As chaves ao lado das equações é apenas umas notação para um sistema.
Informando que as três equação terão os mesmos valores para x, y e z.

Você pode resolver pro Cramer. Conhece?

Sendo x, y e z a solução, podemos encontra-lo através de:
x=\frac{{\Delta}_{x}}{{\Delta}_{s}}

y=\frac{{\Delta}_{y}}{{\Delta}_{s}}

z=\frac{{\Delta}_{z}}{{\Delta}_{s}}

onde {\Delta}_{s}=
\begin{vmatrix}
   1 & 1 & 1 \\ 
   1 & -1 & 2 \\
   2 & 3 & -1 
\end{vmatrix}

Obs.: Note que pegamos os valores dos coeficientes de x, y e z e excluimos a solução (números depois do =)

{\Delta}_{x}=
\begin{vmatrix}
   1 & 1 & 1 \\ 
  -1 & 2 & 3 \\
   3 & -1 & 1 
\end{vmatrix}

Obs.: Note que pegamos os valores dos coeficientes de y, z e da solução e excluimos os coeficientes de x

{\Delta}_{y}=
\begin{vmatrix}
   1 & 1 & 1 \\ 
   1 & 2 & 3 \\
   2 & -1 & 1 
\end{vmatrix}

Obs.: Note que pegamos os valores dos coeficientes de x, z e da solução e excluimos os coeficientes de y

{\Delta}_{z}=
\begin{vmatrix}
   1 & 1 & 1 \\ 
   1 & -1 & 3 \\
   2 & 3 & 1 
\end{vmatrix}

Obs.: Note que pegamos os valores dos coeficientes de x, y e da solução e excluimos os coeficientes de z

Pronto! Achando esses determinantes, basta jogar na fórmula que enunciei no começo e você descobre x, y e z.
Caso tenha alguma dificuldade informe.

Abraços e bom estudo! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Sistemas

Mensagempor Cleyson007 » Dom Mai 10, 2009 15:10

Olá Jansen, seja bem vindo ao Ajuda Matemática :)

Gosto de resolver esse tipo de problema pela "Regra de Cramer"... Sabe a Regra de Cramer?

Veja só --> Os coeficientes de x, y e z formam uma matriz incompleta.

Os termos que encontram-se depois da igualdade, são chamados de "termos independentes dos sistema".


Primeiro, você deverá calcular o determinante da matriz incompleta do sistema (que vai ser chamado de D): \begin{vmatrix}
   1 & 1 & 1  \\ 
   1 & -1 & 2 \\
   2 & 3 & -1 \\
\end{vmatrix} Encontrará como resultado D=5

Segundo, você deverá calcular o determinante da matriz obtida atráves da troca dos coeficientes de x pelos termos independentes, na matriz incompleta (que vai ser chamado de {D}_{x}).

\begin{vmatrix}
   1 & 1 & 1  \\ 
   3 & -1 & 2 \\
   1 & 3 & -1 \\
\end{vmatrix} Encontrará como resultado {D}_{x}=10.

O determinante {D}_{y} fica:

\begin{vmatrix}
   1 & 1 & 1  \\ 
   1 & 3 & 2 \\
   2 & 1 & -1 \\
\end{vmatrix} {D}_{y}=-5

O determinante {D}_{z} fica:

\begin{vmatrix}
   1 & 1 & 1  \\ 
   1 & -1 & 3 \\
   2 & 3 & 1 \\
\end{vmatrix} Encontrará como resultado: {D}_{z}=0

Para encontrar os valores de x, y e z, faça o seguinte: x= {D}_{x}/D, y= {D}_{y}/D e z= {D}_{z}/D.

Espero ter ajudado ;) Qualquer dúvida é só postar, ok?

Um abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Sistemas

Mensagempor Jansen » Seg Mai 11, 2009 01:13

molina escreveu:Bem-vindo, Jansen.

As chaves ao lado das equações é apenas umas notação para um sistema.
Informando que as três equação terão os mesmos valores para x, y e z.

Você pode resolver pro Cramer. Conhece?

Sendo x, y e z a solução, podemos encontra-lo através de:
x=\frac{{\Delta}_{x}}{{\Delta}_{s}}

y=\frac{{\Delta}_{y}}{{\Delta}_{s}}

z=\frac{{\Delta}_{z}}{{\Delta}_{s}}

onde {\Delta}_{s}=
\begin{vmatrix}
   1 & 1 & 1 \\ 
   1 & -1 & 2 \\
   2 & 3 & -1 
\end{vmatrix}

Obs.: Note que pegamos os valores dos coeficientes de x, y e z e excluimos a solução (números depois do =)

{\Delta}_{x}=
\begin{vmatrix}
   1 & 1 & 1 \\ 
  -1 & 2 & 3 \\
   3 & -1 & 1 
\end{vmatrix}

Obs.: Note que pegamos os valores dos coeficientes de y, z e da solução e excluimos os coeficientes de x

{\Delta}_{y}=
\begin{vmatrix}
   1 & 1 & 1 \\ 
   1 & 2 & 3 \\
   2 & -1 & 1 
\end{vmatrix}

Obs.: Note que pegamos os valores dos coeficientes de x, z e da solução e excluimos os coeficientes de y

{\Delta}_{z}=
\begin{vmatrix}
   1 & 1 & 1 \\ 
   1 & -1 & 3 \\
   2 & 3 & 1 
\end{vmatrix}

Obs.: Note que pegamos os valores dos coeficientes de x, y e da solução e excluimos os coeficientes de z

Pronto! Achando esses determinantes, basta jogar na fórmula que enunciei no começo e você descobre x, y e z.
Caso tenha alguma dificuldade informe.

Abraços e bom estudo! :y:


Muito obrigado pela ajuda! Então deu pra perceber que minha dificuldade é saber quando devo usar Cramer e Escalonamento, um serve pra classificar e outro n lembro. Poderia me explicar qndo devo utilizalas dando exemplos. tipo tem hora que 3 sistemas como esse se usa ecalonamento e outros como este utiliza Cramer.
Jansen
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Mai 09, 2009 23:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: formado

Re: Sistemas

Mensagempor Jansen » Seg Mai 11, 2009 01:14

Cleyson007 escreveu:Olá Jansen, seja bem vindo ao Ajuda Matemática :)

Gosto de resolver esse tipo de problema pela "Regra de Cramer"... Sabe a Regra de Cramer?

Veja só --> Os coeficientes de x, y e z formam uma matriz incompleta.

Os termos que encontram-se depois da igualdade, são chamados de "termos independentes dos sistema".


Primeiro, você deverá calcular o determinante da matriz incompleta do sistema (que vai ser chamado de D): \begin{vmatrix}
   1 & 1 & 1  \\ 
   1 & -1 & 2 \\
   2 & 3 & -1 \\
\end{vmatrix} Encontrará como resultado D=5

Segundo, você deverá calcular o determinante da matriz obtida atráves da troca dos coeficientes de x pelos termos independentes, na matriz incompleta (que vai ser chamado de {D}_{x}).

\begin{vmatrix}
   1 & 1 & 1  \\ 
   3 & -1 & 2 \\
   1 & 3 & -1 \\
\end{vmatrix} Encontrará como resultado {D}_{x}=10.

O determinante {D}_{y} fica:

\begin{vmatrix}
   1 & 1 & 1  \\ 
   1 & 3 & 2 \\
   2 & 1 & -1 \\
\end{vmatrix} {D}_{y}=-5

O determinante {D}_{z} fica:

\begin{vmatrix}
   1 & 1 & 1  \\ 
   1 & -1 & 3 \\
   2 & 3 & 1 \\
\end{vmatrix} Encontrará como resultado: {D}_{z}=0

Para encontrar os valores de x, y e z, faça o seguinte: x= {D}_{x}/D, y= {D}_{y}/D e z= {D}_{z}/D.

Espero ter ajudado ;) Qualquer dúvida é só postar, ok?

Um abraço


Muito obrigado pela ajuda! Então deu pra perceber que minha dificuldade é saber quando devo usar Cramer e Escalonamento, um serve pra classificar e outro n lembro. Poderia me explicar qndo devo utilizalas dando exemplos. tipo tem hora que 3 sistemas como esse se usa ecalonamento e outros como este utiliza Cramer.
Jansen
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Mai 09, 2009 23:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: formado

Re: Sistemas

Mensagempor Molina » Seg Mai 11, 2009 04:36

Boa noite, Jansen.

Com os dois modos que você citou, você encontra a solução (x, y, z) que você está procurando. A diferença é que por Cramer você já é capaz de classificar o sistema em: Sistema Possivel Determinado (SPD), Sistema Possível Indeterminado (SPI) ou em Sistema Impossível (SI).

Ficou claro?

Abraços e bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D