por btag » Qui Mai 05, 2011 14:33
x+3y-2z=5
3x+5y+6z=7
2x+4y+3z=8
-
btag
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Mai 05, 2011 14:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: FISIOTERAPIA
- Andamento: formado
por carlosalesouza » Qui Mai 05, 2011 15:39
Existem diversas formas. Pode ser feito por matriz, por substituição, enfim...
Por matriz é mais fácil... por substituição é melhor de entender (a meu ver)
Considerando que x, y e z mantém o mesmo valor nas três equações, o que é necessário para caracterizar o sistema de equações, pegue uma equação, encontre a relação entre uma das variáveis e as demais...
Depois, pegue outra sentença e substitua a variável que voce encontrou... assim, restarão duas variáveis... isole uma delas e siga substituindo... rs em breve voce terá o valor de uma delas e poderá, sempre substituindo, encontrar o valor das três...
Como disse, este não é o caminho mais fácil, mas permite que voce visualize bem a relação entre as variáveis...
Outro método é o da soma... da mesma forma que num sistema com duas variáveis...
Voce separa duas equações e multiplica os dois lados da igualdade de uma delas por um valor que faça com que uma das variáveis da primeira sentença se torne simétrica à da segunda equação.... então você soma os termos restantes do produto e no final te sobrarão duas variáveis numa nova equação. Voce isola uma delas e segue substituindo... rs
Pra ficar mais fácil de entender, vamos usar um outros sistema similar:

Pela soma, separamos as duas primeiras e multiplicando a primeira por -1

Somando as duas equações:

Podemos, então, subsitituir o y por

em qualquer das equações iniciais

Temos agora duas variáveis que podem ser substituídas por z...

Assim:

e

Certo? Existem diversos caminhos, mas idéia é sempre levar em consideração as propriedades da igualdade.
O caminho da matriz é com certeza o mais rápido, pois a matriz é um algoritmo válido para realizar esse tipo de procedimento... infelizmente, a menos que voce entenda a natureza da matriz, a solução pode parecer ter vindo por mágica, e voce acaba não entendendo o funcionamento da resolução... pela soma e pela substituição, voce visualiza o desenrolar da resolução de forma mais descritiva, ficando mais fácil aprender e não esquecer mais...
Espero ter ajudado, qualquer dúvida, é só falar....
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
-
carlosalesouza
- Colaborador Voluntário

-
- Mensagens: 103
- Registrado em: Sex Abr 29, 2011 17:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática -LIC
- Andamento: cursando
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Como resolver esse sistema linear
por Silva339 » Qua Mar 20, 2013 18:14
- 1 Respostas
- 1765 Exibições
- Última mensagem por Russman

Qua Mar 20, 2013 18:46
Sistemas de Equações
-
- Equação - Como resolver problema com equação
por macedo1967 » Seg Set 25, 2017 10:13
- 3 Respostas
- 8513 Exibições
- Última mensagem por DanielFerreira

Dom Out 08, 2017 20:10
Equações
-
- Como resolver essa equação?
por viniciusantonio » Qua Out 21, 2009 19:17
- 1 Respostas
- 4015 Exibições
- Última mensagem por carlos r m oliveira

Qui Out 22, 2009 14:55
Cálculo: Limites, Derivadas e Integrais
-
- [Equação do 2º grau] Como resolver?
por carcleo » Ter Mai 08, 2012 10:02
- 4 Respostas
- 3121 Exibições
- Última mensagem por carcleo

Ter Mai 08, 2012 15:34
Polinômios
-
- Equação de Matrizes - Como Resolver
por juniocs » Qua Set 19, 2012 09:44
- 11 Respostas
- 6111 Exibições
- Última mensagem por Cleyson007

Qua Set 19, 2012 17:10
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.