• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz e funções

Matriz e funções

Mensagempor Malorientado » Ter Set 04, 2012 00:31

Sendo f(x)= 5-3x+2x², calcule f(A) onde A=[1 2/3 -4]. Coloquei as linhas da matriz A separadas por /.
Devo colocar 5 * In na resolução? Por que?
Malorientado
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Ago 06, 2012 23:41
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Matriz e funções

Mensagempor LuizAquino » Ter Set 04, 2012 10:48

Malorientado escreveu:Sendo f(x)= 5-3x+2x², calcule f(A) onde A=[1 2/3 -4]. Coloquei as linhas da matriz A separadas por /.
Devo colocar 5 * In na resolução? Por que?


Note que f é uma função real. Ela recebe como entrada um número real e devolve como saída um outro número real. Mas A é uma matriz e não apenas um número real. Sendo assim, ao escrever f(A) não poderíamos simplesmente "substituir" x por A na função original devido ao número 5, pois ficaríamos com algo desse tipo: "5 - 3A + 2A²". E qual é o problema com essa expressão? Ora, A é uma matriz 2 por 2. Sendo assim, -3A e 2A² também serão matrizes 2 por 2. Mas o termo 5 é apenas um número. Sendo assim, ao escrever "5 - 3A + 2A²" você estaria dizendo para calcular a soma entre o número 5 e as matrizes -3A e 2A². Mas isso não faz sentido, pois o termo 5 também deveria ser uma matriz 2 por 2 para que a soma pudesse ser efetuada. Como contornar isso? Simples: por convenção "fingimos" que 5 é na verdade a matriz 5I, onde I é a matriz identidade de ordem 2 por 2.

Resumindo, para resolver o exercício basta efetuar a seguinte operação:

f(A) = 5\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} - 3\begin{bmatrix}1 & 2 \\ 3 & -4\end{bmatrix} + 2 \begin{bmatrix}1 & 2 \\ 3 & -4\end{bmatrix}\begin{bmatrix}1 & 2 \\ 3 & -4\end{bmatrix}

Agora tente continuar o exercício a partir daí.

Observação

Por favor, procure usar o LaTeX para digitar as notações de forma adequada.

Por exemplo, para digitar a matriz desejada basta usar o código:

Código: Selecionar todos
[tex]
\begin{bmatrix}
1 & 2 \\
3 & -4
\end{bmatrix}
[/tex]


O resultado desse código será:

\begin{bmatrix}
1 & 2 \\
3 & -4
\end{bmatrix}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Matriz e funções

Mensagempor Malorientado » Ter Set 04, 2012 20:20

Professor mais uma vez obrigado!
Malorientado
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Ago 06, 2012 23:41
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}