• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz

Matriz

Mensagempor Claudin » Qui Mar 01, 2012 16:07

Dada as matrizes a seguir:

A = \begin{bmatrix} 
2 & 0 & 0  \\
4 & -1 & 0 \\
2 & 3 & -1 \end{bmatrix}

B = \begin{bmatrix} 
7 & -3 & -28  \\
-2 & 1 & 8 \\
0 & 0 & 1 \end{bmatrix}

C = \begin{bmatrix} 
1 & 2 & 0  \\
0 & -1 & 1 \\
-1 & 1 & 2 \end{bmatrix}


Determine a matriz M, tal que AMB = C


Não sei o que fazer em um exercício desse tipo.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz

Mensagempor MarceloFantini » Qui Mar 01, 2012 16:24

Seja M = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}. Basta resolver a equação

AMB =

= \begin{bmatrix} 2 & 0 & 0 \\ 4 & -1 & 0 \\ 2 & 3 & -1 \end{bmatrix} \cdot \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \cdot \begin{bmatrix} 7 & -3 & -28 \\ -2 & 1 & 8 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ -1 & 1 & 2 \end{bmatrix} =

= C.

Multiplique e resolva o sistema.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Matriz

Mensagempor LuizAquino » Qui Mar 01, 2012 18:44

Claudin escreveu:Dada as matrizes a seguir:

A = \begin{bmatrix} 2 & 0 & 0 \\ 4 & -1 & 0 \\ 2 & 3 & -1 \end{bmatrix}

B = \begin{bmatrix} 7 & -3 & -28 \\ -2 & 1 & 8 \\ 0 & 0 & 1 \end{bmatrix}

C = \begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & 1 \\ -1 & 1 & 2 \end{bmatrix}


Determine a matriz M, tal que AMB = C


Uma maneira é usar o que o colega MarceloFantini indicou.

Outra forma é perceber que:

AMB = C

A^{-1}AMB = A^{-1}C

MB = A^{-1}C

MBB^{-1} = A^{-1}CB^{-1}

M = A^{-1}CB^{-1}

Em resumo: Se AMB = C, então M = A^{-1}CB^{-1} (caso A e B seja inversível).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Matriz

Mensagempor MarceloFantini » Qui Mar 01, 2012 19:02

Pela forma triangular de A é fácil perceber que seu determinante é não-nulo, portanto tem inversa. Resta descobrir se B tem inversa.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: