• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resolva o sistema não-linear

Resolva o sistema não-linear

Mensagempor andersontricordiano » Seg Jan 23, 2012 19:38

Resolva o sistema não-linear :

\begin{vmatrix}
   \frac{1}{a}+ & \frac{2}{b}+&\frac{1}{c}=8  \\ 
   \frac{1}{a}+ &\frac{1}{b}+&\frac{2}{c} =7\\
\frac{2}{a}+&\frac{1}{b}+&\frac{1}{c}=9 
\end{vmatrix}
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Resolva o sistema não-linear

Mensagempor Arkanus Darondra » Seg Jan 23, 2012 20:22

andersontricordiano escreveu:Resolva o sistema não-linear :

\begin{vmatrix}\frac{1}{a}+ & \frac{2}{b}+&\frac{1}{c}=8  \\ \frac{1}{a}+ &\frac{1}{b}+&\frac{2}{c} =7\\\frac{2}{a}+&\frac{1}{b}+&\frac{1}{c}=9 \end{vmatrix}

$ \left\{\begin{array}{lll}\displaystyle \frac{1}{a}+ \frac{2}{b}+\frac{1}{c}=8(L_1 - L_2)(-2L_1 + L_2) \\\displaystyle \frac{1}{a}+\frac{1}{b}+\frac{2}{c} =7 \\\displaystyle \frac{2}{a}+\frac{1}{b}+\frac{1}{c}=9\end{array}\right \Rightarrow $ \left\{\begin{array}{lll}\displaystyle \frac{1}{a}+ \frac{2}{b}+\frac{1}{c}=8 \\\displaystyle 0+\frac{1}{b}-\frac{1}{c} =1(-L_2 + L_3) \\\displaystyle 0-\frac{3}{b}-\frac{1}{c}=-7\end{array}\right \Rightarrow $ \left\{\begin{array}{lll}\displaystyle \frac{1}{a}+ \frac{2}{b}+\frac{1}{c}=8 \\\displaystyle 0+\frac{1}{b}-\frac{1}{c} =1 \\\displaystyle 0-\frac{4}{b}+0=-8\end{array}\right
Então:
b = \frac12, c = 1 e a = \frac13
Qualquer dúvida, volte aqui. :y:
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.