• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(ESPCEX)-MATRIZ

(ESPCEX)-MATRIZ

Mensagempor natanskt » Ter Nov 16, 2010 12:58

Os valores de x e y que satisfazem a igualdade
\begin{bmatrix}
log_x{3} & 1  \\
log_3{x} & 0  \\
\end{bmatrix}.\begin{bmatrix}
1 & 0  \\
log_2{y} & 1  \\
\end{bmatrix}=\begin{bmatrix}
1 & 1  \\
2 & 0  \\
\end{bmatrix}

tentei primeiro resolver os logaritimos,mais num bate nenhumas da minhas tentativas com o gabarito
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ESPCEX)-MATRIZ

Mensagempor Molina » Ter Nov 16, 2010 14:08

Boa tarde, Natan.

Basta usar as propriedades básicas de multiplicação de matriz, veja:

\begin{bmatrix}
log_x{3} & 1  \\
log_3{x} & 0  \\
\end{bmatrix}.\begin{bmatrix}
1 & 0  \\
log_2{y} & 1  \\
\end{bmatrix}=\begin{bmatrix}
1 & 1  \\
2 & 0  \\
\end{bmatrix}

log_x{3} * 1 + 1 * log_2{y} = 1
log_x{3} * 0 + 1 * 1 = 1
log_3{x} * 1 + log_2{y}*0 = 2
log_3{x} * 0 + 0*1 = 0

Reescrevendo as equações acima:

log_x{3} + log_2{y} = 1
1 = 1
log_3{x} = 2
0 = 0

Veja que só a primeira e a terceira equação que nos importa:

log_x{3} + log_2{y} = 1
log_3{x} = 2

Usando a propriedade de log na segunda equação, temos:

log_3{x} = 2 \Rightarrow 3^2 = x \Rightarrow x = 9

Substituindo x na primeira equação, temos:

log_x{3} + log_2{y} = 1
log_9{3} + log_2{y} = 1
\frac{1}{2} + log_2{y} = 1
log_2{y} = \frac{1}{2}
2^{\frac{1}{2}}=y
y=\sqrt{2}

Bom estudo! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Matrizes e Determinantes

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.