por Colton » Qui Nov 11, 2010 12:48
+
+
Olá pessoal,
Estou relançando minha dúvida do seguinte exercício, para o qual não estou encontrando solução:
Como ainda não sei operar com o Latex, faço a seguinte convenção para matrizes:
Linha: a11 = primeira casa, a12 = segunda casa, etc
Coluna: a11 = primeira casa, a21 = segunda casa, etc
o exercício é o que segue
“Supondo positivos todos os elementos literais da matriz quadrada nxn
a11 = a1, a12 = a2, ...., aij = (vago), a1n = an
a21 = b1, a22 = b2, ...., aij = bn-1, a2n = 0
....................................................................
an1 = r1, an2 = 0, ......, aij = 0, ann = o
e sendo n múltiplo de 4, qual é o sinal do determinante correspondente?”
A matriz do enunciado tem o seguinte aspecto gráfico:
a1#a2#...# #an
b1#b2#...#bn-1# 0
...........................
r1# 0 #...# 0 # 0 (o jogo da velha representando os espaços entre as células)
Seguindo a indicação do enunciado eu tentei trabalhar com a seguinte matriz (4x4) e
respectivas manipulações:
[(a1), (a2), (a3), (a4)]
[(b1), (b2), (b3), (0)]
[(c1), (c2), (c3), (0)]
[(r1), (0), (0), (0)]
trocando a 4ª com a 1ª linha => Det fica negativo
[(r1), (0), (0), (0)]
[(a1), (a2), (a3), (a4)]
[(b1), (b2), (b3), (0)]
[(c1), (c2), (c3), (0)]
dividindo a primeira linha por r1 => Det fica multiplicado por r1 => isto é por -r1
[(1), (0), (0), (0)]
[(a1), (a2), (a3), (a4)]
[(b1), (b2), (b3), (0)]
[(c1), (c2), (c3), (0)]
aplicanto a Regra de Chió chego a:
-r1 multiplicando
[(a2), (a3), (a4)]
[(b2), (b3), (0)]
[(c2), (c3), (0)]
onde eu “empaco” pois o determinante resulta em
-r1[a4 b2 c3 - a4 b3 c2]
e eu não vejo como determinar que este produto seja positivo (que é a resposta do exercício).
Espero que haja alguém mais esperto do que eu para me orientar...
Sds
Colton
+
+
-
Colton
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Dom Jul 25, 2010 17:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: formado
por Elcioschin » Sex Nov 12, 2010 11:50
Colton:
Como totos os elementos da matriz são positivos, no final o resultado deverá ser negativo.
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por Colton » Sex Nov 12, 2010 12:04
+
+
Olá Elcioschin!
Então devo concluir que a resposta dada no livro: POSITIVO está errada?
Nesta coleção há muito poucas respostas erradas (Fundamentos de Matemática Elementar, 11 volumes, o presente exercício é o de número 328 do volume 4 "sequências-matrizes-determinantes-sistemas")
Abraço
Colton
+
+
-
Colton
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Dom Jul 25, 2010 17:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: formado
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [MATRIZ] Como acho o determinante dessa matriz
por LAZAROTTI » Qui Mai 03, 2012 00:38
- 4 Respostas
- 6923 Exibições
- Última mensagem por Russman

Qui Mai 03, 2012 01:56
Matrizes e Determinantes
-
- [Matriz]- inversa de uma matriz
por Ana_Rodrigues » Seg Mar 26, 2012 08:54
- 2 Respostas
- 3400 Exibições
- Última mensagem por Ana_Rodrigues

Seg Mar 26, 2012 18:05
Matrizes e Determinantes
-
- [MATRIZ]Determinante da Matriz 4x4
por LAZAROTTI » Qui Mai 03, 2012 22:33
- 1 Respostas
- 6592 Exibições
- Última mensagem por LuizAquino

Sex Mai 11, 2012 08:00
Matrizes e Determinantes
-
- [Matriz] Matriz com potencias
por rochadapesada » Dom Abr 07, 2013 20:29
- 3 Respostas
- 4530 Exibições
- Última mensagem por DanielFerreira

Seg Abr 08, 2013 17:32
Matrizes e Determinantes
-
- matriz
por Barbara » Ter Ago 18, 2009 15:26
- 4 Respostas
- 4668 Exibições
- Última mensagem por Molina

Qui Ago 20, 2009 18:11
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.