• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inversa de 3° Ordem

Inversa de 3° Ordem

Mensagempor DanielRJ » Sáb Set 11, 2010 15:34

Olá pessoal eu fiz uma questão do ITA e ela pede a soma dos elementos da inversa. Gostaria de saber se há algum atalho que eu possa ganhar tempo nesse tipo de questão, já que calcular a inversa da muito trabalho mas mesmo assim eu fiz do jeito tradicional e obtive resposta igual a 0.

(ITA) Seja a matriz 3x3 dada por\begin{pmatrix}
1 &2  &3 \\ 
 1&  0&0 \\ 
 3&0  &1 
\end{pmatrix} Sabendo que B é inversa de A, então a soma dos elementos de B vale?

A)1
B)2
C)5
D)0
E)-2
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Inversa de 3° Ordem

Mensagempor Douglasm » Sáb Set 11, 2010 16:15

Na verdade, a resposta não é zero. Vou fazer do jeito tradicional:

-Determinando matriz dos cofatores (M):

M = \begin{vmatrix}{0 & -1 & 0 \\ -2 & -8 & 6 \\ 0 & 3 & - 2}\end{vmatrix}

Sabemos que a transposta dessa matriz é igual a matriz adjunta:

\overline{M} = \begin{vmatrix}{0 & -2 & 0 \\ -1 & -8 & 3 \\ 0 & 6 & - 2}\end{vmatrix}

Observando que o determinante de A é -2, temos que B, a inversa de A, é igual a:

B = A^{-1} = \frac{1}{\det A} . \overline{M} \;\therefore

B =  \frac{-1}{2} . \begin{vmatrix}{0 & -2 & 0 \\ -1 & -8 & 3 \\ 0 & 6 & - 2}\end{vmatrix}\;\therefore

B = \begin{vmatrix}{0 & 1 & 0 \\ \frac{1}{2} & 4 & \frac{-3}{2} \\ 0 & -3 & 1}\end{vmatrix}

A soma dos elementos de B é dado por:

4 + 1 + 1 + \frac{1}{2} - 3 - \frac{3}{2} = 2

A resposta é letra b.

Não creio que isso vá lhe dar uma grande vantagem, mas um outro jeito que existe para encontrar a inversa seria colocar ao lado da matriz a ser invertida, a matriz identidade e realizar os seguintes passos:

- Transformar a matriz a ser invertida na matriz identidade;
- Repetir na matriz identidade qualquer operação realizada na matriz supracitada.

Ex: Se você multiplicar a segunda linha por 2 e somar a primeira, repita a mesma coisa com a matriz identidade. No final das contas a matriz inicial se tornará a identidade e a identidade se tornará a inversa.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Inversa de 3° Ordem

Mensagempor DanielRJ » Sáb Set 11, 2010 16:23

Pow valeu brigadão!! deu zero porque errei um misero sinal na adjunta esqueci de colocar.. mas de qualquer forma perdi o ponto. kkk valeu ae.
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?