por Colton » Qui Out 28, 2010 17:57
+
+
Olá pessoal,
Estou “quebrando os dentes” no seguinte exercício, para o qual não estou encontrando solução:
“Supondo positivos todos os elementos literais da matriz quadrada
{[(a1), (a2), ... (), (an)]; [(b1), (b2), ... (bn-1), (0)]; [.............]; [ (r1), (0), ... (0), (0)]}
e sendo n múltiplo de 4, qual é o sinal do determinante correspondente?”
Notar que no enunciado do problema a célula a13 está vaga...
Seguindo a indicação do enunciado eu tentei trabalhar com a seguinte matriz (por exemplo 4x4) e
respectivas manipulações:
{[(a1), (a2), (a3), (a4)]; [(b1), (b2), (b3), (0)]; [(c1), (c2), (c3), (0)]; [(r1), (0), (0), (0)]}
-{[(r1), (0), (0), (0)]; [(a1), (a2), (a3), (a4)]; [(b1), (b2), (b3), (0)]; [(c1), (c2), (c3), (0)]}
-r1{[(1), (0), (0), (0)]; [(a1), (a2), (a3), (a4)]; [(b1), (b2), (b3), (0)]; [(c1), (c2), (c3), (0)]}
aplicanto a Regra de Chió chego a:
-r1{(a2), (a3), (a4)]; [(b2), (b3), (0)]; [(c2), (c3), (0)]} onde eu “empaco” pois o determinante resulta em
-r1[a4 b2 c3 - a4 b3 c2] = -r1a4 [b2 c3 - b3 c2]
e eu não vejo como determinar que este produto seja positivo (que é a resposta do exercício).
Espero que haja alguém mais esperto do que eu para me orientar...
Sds
Colton
+
+
-
Colton
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Dom Jul 25, 2010 17:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: formado
por MarceloFantini » Qui Out 28, 2010 22:32
Colton, desculpe mas não consigo entender. Você pode tentar usando Latex?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Colton » Sex Out 29, 2010 08:37
+
+
Olá Fantini
É que eu não sei usar o Latex....
a matriz é a seguinte
|a1 - a2 ... ( ) - an|
|b1 - b2 ... bn-1 - 0 |
|......................|
| r1 - 0 ... 0 - 0 |
espero que assim fique + claro...apesar que no "prever" o editor corta os espaços!
sds
Colton
+
+
-
Colton
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Dom Jul 25, 2010 17:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: formado
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Matrizes e Determinantes]
por angela sofia Pereira » Sáb Nov 12, 2011 11:39
- 4 Respostas
- 3762 Exibições
- Última mensagem por angela sofia Pereira

Sáb Nov 12, 2011 21:48
Matrizes e Determinantes
-
- [Matrizes e Determinantes]
por 47elizeu » Qui Set 04, 2014 19:05
- 1 Respostas
- 4600 Exibições
- Última mensagem por 47elizeu

Sáb Set 06, 2014 21:22
Matrizes e Determinantes
-
- [Determinantes] Inversão de Matrizes
por vanessafey » Sex Set 02, 2011 22:52
- 5 Respostas
- 3755 Exibições
- Última mensagem por vanessafey

Sáb Set 03, 2011 16:35
Matrizes e Determinantes
-
- determinantes - matrizes envolvendo trigonometria
por natanaelskt » Sex Abr 26, 2013 10:23
- 1 Respostas
- 2999 Exibições
- Última mensagem por DanielFerreira

Sex Abr 26, 2013 21:48
Matrizes e Determinantes
-
- [Matrizes invertíveis] e matrizes inversas
por JacquesPhilippe » Seg Ago 08, 2011 19:19
- 3 Respostas
- 5156 Exibições
- Última mensagem por LuizAquino

Qui Ago 11, 2011 19:43
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.