• Anúncio Global
    Respostas
    Exibições
    Última mensagem

cálculo de igualdade matricial

cálculo de igualdade matricial

Mensagempor engel » Sáb Ago 07, 2010 11:21

Oi, tenho uma questão da UFRGS que diz assim:

Na igualdade matricial [1 0 0 [1 [1
x 1 0 . 2 = 1
y x 1] 3] 1] o valor de x+y é:

a) -2
b) -1
c) 0
d) 1
e) 2


não está claro nessa visualização, mas ma matriz há um "triângulo de zeros", o que indica que o determinante dela será o produto da diagonal. Então, será 1.

Mas agora, não sei como continuar o cálculo e descobrir quanto vale x+y. Qual o procedimento que devo fazer em igualdades matriciais?

Obrigada!!!!
engel
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Dez 30, 2009 16:38
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: cálculo de igualdade matricial

Mensagempor Molina » Sáb Ago 07, 2010 13:50

engel escreveu:Oi, tenho uma questão da UFRGS que diz assim:

Na igualdade matricial [1 0 0 [1 [1
x 1 0 . 2 = 1
y x 1] 3] 1] o valor de x+y é:

a) -2
b) -1
c) 0
d) 1
e) 2


não está claro nessa visualização, mas ma matriz há um "triângulo de zeros", o que indica que o determinante dela será o produto da diagonal. Então, será 1.

Mas agora, não sei como continuar o cálculo e descobrir quanto vale x+y. Qual o procedimento que devo fazer em igualdades matriciais?

Obrigada!!!!

Bom dia.

Pelo o que puder ver, o que você quer calcular é:

\begin{pmatrix}
   1 & 0 & 0  \\ 
   x & 1 & 0  \\
   y & x & 1 
\end{pmatrix}
* \begin{pmatrix}
   1  \\ 
   2  \\
   3 
\end{pmatrix}=
\begin{pmatrix}
   1  \\ 
   1  \\
   1 
\end{pmatrix}

O que você precisa agora é calcular a multiplicação das duas primeiras matrizes. Não há necessidade de relacionar com determinante. Sendo assim...

\underbrace{
\begin{pmatrix}
   1 & 0 & 0  \\ 
   x & 1 & 0  \\
   y & x & 1 
\end{pmatrix}
* \begin{pmatrix}
   1  \\ 
   2  \\
   3 
\end{pmatrix}}=
\begin{pmatrix}
   1  \\ 
   1  \\
   1 
\end{pmatrix}

\begin{pmatrix}
   1  \\ 
   x+2  \\
   y+2x+3 
\end{pmatrix}=
\begin{pmatrix}
   1  \\ 
   1  \\
   1 
\end{pmatrix}

Agora é só igualar os valores:

1=1
x+2=1 \Rightarrow x=-1
y+2x+3=1 \Rightarrow y=0

Com isso concluímos que x+y=-1


Para próximas questões é indicado que você faça uso do LaTeX (através do Editor de Fórmulas) para melhor visualização da matriz.

Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}