• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Não consigo achar o determinante

Não consigo achar o determinante

Mensagempor IsabelRangell » Qui Abr 08, 2010 17:08

A questão é a seguinte:

As matrizes A e B , quadradas de ordem 3, são tais que B = 2.detAt , onde detAt é a matriz transposta de A. Se o determinante de B é igual a 40 , então o determinante da matriz inversa de A é igual a:
(A)1/5 <--- GABARITO DIZ QUE É A CORRETA
(B)5
(C)1/40
(D)1/20
(E)20

-----------------------------------------------------------------------
Não entendi como resolver essa. Reli a matéria e tentei aplicar as propriedades. Fiz assim:

B = 2.{A}^{t}
det{A}^{t} = detA
detB = 40  \Rightarrow  detB = 2.detA  \Rightarrow  2.detA = 40  \Rightarrow  detA = \frac{40}{2} = 20
{detA}^{-1} = \frac{1}{detA} = \frac{1}{20}

Logo, eu teria marcado a letra D e errado categoricamente.
Por que não apliquei corretamente as propriedades? Onde está meu erro? Como assim, 1/5??
Avatar do usuário
IsabelRangell
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Abr 05, 2010 18:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Letras (Português/Alemão)
Andamento: cursando

Re: Não consigo achar o determinante

Mensagempor MarceloFantini » Qui Abr 08, 2010 19:55

Por acaso não seria B = det(2A^t)? Como são de ordem 3, isso se transformaria em B = 8det(A), justificando a resposta.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.