• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz

Matriz

Mensagempor oescolhido » Dom Mar 03, 2013 12:56

Alguém sabe como resolver ??
Imagem
oescolhido
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Sáb Fev 09, 2013 17:20
Formação Escolar: ENSINO MÉDIO
Área/Curso: 2 ANO
Andamento: cursando

Re: Matriz

Mensagempor marinalcd » Seg Mar 04, 2013 14:51

A reflexão é em torno do eixo x ou do eixo y?

Se for do y (que parece que é) , a matriz é \begin{pmatrix}
  -1 & 0  \\ 
   0 & 1
\end{pmatrix}

e a matriz resultante será: \begin{pmatrix}
   -5 & 9  
\end{pmatrix}

Bom acho que é isso! Lembre-se que para achar a matriz resultante basta multiplicar uma pela outra.
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}