• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Qual o valor determinante da matriz

Qual o valor determinante da matriz

Mensagempor marquesjadson » Seg Fev 18, 2013 18:18

Qual o valor determinante da matriz \begin{bmatrix}
 a & b \\
 b & a\\ 
  
\end{bmatrix}, sendo 2a=e^x + e^-^ e e 2b = e^x -e^-^x ?
Alguém porfavor poderia resolver está questão ?
marquesjadson
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Fev 16, 2013 01:04
Formação Escolar: ENSINO MÉDIO
Área/Curso: 2
Andamento: cursando

Re: Qual o valor determinante da matriz

Mensagempor DanielFerreira » Seg Fev 18, 2013 21:07

O determinante é dado por:

\\  a^2 - b^2 = \\ \boxed{(a + b)(a - b)}

Presumo que tenha cometido um erro de digitação e a intenção era dizer que 2a = e^x + e^{- x}, certo?!

Se sim, segue que:

\boxed{a = \frac{e^x}{2} + \frac{e^{- x}}{2}} e \boxed{b = \frac{e^x}{2} - \frac{e^{- x}}{2}}

Então,

\\ a + b = \\\\ \frac{e^x}{2} + \cancel{\frac{e^{- x}}{2}} + \frac{e^x}{2} - \cancel{\frac{e^{- x}}{2}} = \\\\\\ \frac{\cancel{2}e^x}{\cancel{2}} = \\\\ \boxed{\boxed{e^x}}


E,

\\ a - b = \\\\ \cancel{\frac{e^x}{2}} + \frac{e^{- x}}{2} - \cancel{\frac{e^x}{2}} + \frac{e^{- x}}{2} = \\\\\\ \frac{\cancel{2}e^{- x}}{\cancel{2}} = \\\\ \boxed{\boxed{e^{- x}}}


Portanto,

\\ (a + b)(a - b) = \\\\ e^x \cdot e^{- x} = \\\\ e^{x - x} = \\\\ e^0 = \\\\ \boxed{\boxed{\boxed{1}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.