• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz

Matriz

Mensagempor anneliesero » Dom Out 14, 2012 12:56

Podem me ajudar?

Se A é uma matriz quadrada de ordem 2 e {A}^{t} sua transposta , determine A, tal que A = 2.{A}^{t}.
''Não confunda jamais conhecimento com sabedoria. Um o ajuda a ganhar a vida; o outro a construir uma vida.'' - Sandra Carey
anneliesero
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Qui Set 13, 2012 17:58
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Matriz

Mensagempor Vinicius_ » Dom Out 14, 2012 15:06

A=\begin{bmatrix}a&b\\c&d\end{bmatrix}

A^t=\begin{bmatrix}a&c\\b&d\end{bmatrix}

A=2\times A^t

\begin{bmatrix}a&b\\c&d\end{bmatrix}=\begin{bmatrix}2a&2c\\2b&2d\end{bmatrix}

2a=a\Longrightarrow a=0

2d=d\Longrightarrow d=0

2b=c

2c=b

2\cdot 2b=b

b=0

d=0

A=\begin{bmatrix}0&0\\0&0\end{bmatrix}
Vinicius_
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Out 14, 2012 14:50
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Matriz

Mensagempor anneliesero » Dom Out 14, 2012 17:35

Por que aqui o a/2 resultou em 0 e o d/2 deu 0?


2a=a =>a=0

2d=d=>d=0
''Não confunda jamais conhecimento com sabedoria. Um o ajuda a ganhar a vida; o outro a construir uma vida.'' - Sandra Carey
anneliesero
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Qui Set 13, 2012 17:58
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Matriz

Mensagempor Vinicius_ » Dom Out 14, 2012 18:00

2a=a\Longrightarrow 2a-a=a-a\Longrightarrow a=0
Vinicius_
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Out 14, 2012 14:50
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}