• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinantes - cálculo matriz nxn (aplicar propriedades)

Determinantes - cálculo matriz nxn (aplicar propriedades)

Mensagempor emsbp » Qua Out 10, 2012 09:25

Bom dia.
É pedido para calcular o determinante da seguinte matriz\begin{pmatrix}
   a & a & a... a  \\ 
   1 & a+1 & 1 ... 1 \\
   1 & 1 &a+1 ...1\\
   ...   ....\\
1 & 1& 1 ... a+1
\end{pmatrix}.
Sei que é necessário aplicar alguma propriedade dos determinantes. No entanto, nas propriedades que pesquisei em http://www.igm.mat.br, não consegui encontrar uma que se aplique. O que estarei a fazer mal?
Obrigado!
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado

Re: Determinantes - cálculo matriz nxn (aplicar propriedades

Mensagempor young_jedi » Qua Out 10, 2012 14:31

reescrevendo a matriz

\left(\begin{array}{cccccc}a&0&0&0&\dots&0\\1&a&0&0&\dots&0\\1&0&a&0&\dots&0\\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\1&0&0&0&\dots&a\end{array}\right).
\left(\begin{array}{cccccc}1&1&1&1&\dots&1\\0&1&0&0&\dots&0\\0&0&1&0&\dots&0\\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\0&0&0&0&\dots&1\end{array}\right)=
\left(\begin{array}{cccccc}a&a&a&a&\dots&a\\1&a+1&1&1&\dots&1\\1&1&1+a&1&\dots&1\\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\1&1&1&1&\dots&a+1\end{array}\right)

utilizando a propriedade que diz

det(A.B)=det(A).det(B)

chega-se ao determinante da matriz
note tambem que as matrizez A e B nesse caso são matrizes triangulares, ou seja os elementos acima ou abaixo de sua diagonal são iguais a zero, e em uma matriz assim o determinante é igual ao produto dos elementos da diagonal principal
com isso da pra determinar os dois determinantes e encontrar o determinante final pela regra do produto.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Determinantes - cálculo matriz nxn (aplicar propriedades

Mensagempor emsbp » Qua Out 10, 2012 16:43

OK!
Muito obrigado. Ajuda preciosa.
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.