• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Matriz]- Calculando a inversa

[Matriz]- Calculando a inversa

Mensagempor Ana_Rodrigues » Seg Mar 26, 2012 19:05

Mais uma vez não ta dando certo a minha solução da matriz, e eu não estou conseguindo achar o erro!

Dada a matriz: \begin{pmatrix}
   1 & 0 & x \\ 
   1 & 1 & {x}^{2}\\
   2 & 2 & {x}^{2}
\end{pmatrix}

é pedido a inversa dessa matriz

Minha resposta:

\begin{pmatrix}
   1 & 0 & x & 1 & 0 & 0 \\ 
   1 & 1 & {x}^{2} & 0 & 1 & 0\\
   2 & 2 & {x}^{2} & 0 & 0 & 1
\end{pmatrix}

L2 -> L2 -L1
L3 -> L3 - 2L1



\begin{pmatrix}
   1 & 0 & x & 1 & 0 & 0 \\ 
   0 & 1 & {x}^{2}-x & -1 & 1 & 0\\
   0 & 2 & {x}^{2}-2x & -2 & 0 & 1
\end{pmatrix}

L3 -> L3 - 2L2


\begin{pmatrix}
   1 & 0 & x & 1 & 0 & 0 \\ 
   0 & 1 & {x}^{2}-x & -1 & 1 & 0\\
   0 & 0 & -{x}^{2} & 0 & -2 & 1
\end{pmatrix}

L3\rightarrow-\frac{1}{{x}^{2}}L3


\begin{pmatrix}
   1 & 0 & x & 1 & 0 & 0 \\ 
   0 & 1 & {x}^{2}-x & -1 & 1 & 0\\
   0 & 0 & 1 & 0 & \frac{2}{{x}^{2}} & -\frac{1}{{x}^{2}}
\end{pmatrix}

L1\rightarrow L1-xL3

L2\rightarrow L2-({x}^{2}-x)L3


\begin{pmatrix}
   1 & 0 & 0 & 1 & -\frac{2}{x} & \frac{1}{x} \\ 
   0 & 1 & 0 & -1 & \frac{-x+2}{x} & \frac{x-1}{x}\\
   0 & 0 & 1 & 0 & \frac{2}{{x}^{2}} & -\frac{1}{{x}^{2}}
\end{pmatrix}

A inversa é a matriz do canto direito.


A resposta do gabarito eh:

\begin{pmatrix}
   1  & \frac{-2}{x} & \frac{1}{x}  \\ 
   -1 & \frac{-1+2}{x} & \frac{1-1}{x} \\ 
   1  & \frac{2}{{x}^{2}} & -\frac{1}{{x}^{2}}
\end{pmatrix}
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Matriz]- Calculando a inversa

Mensagempor fraol » Seg Mar 26, 2012 21:44

Eu fiz os cálculos e cheguei na mesma inversa que você.

Para tirar a dúvida quanto ao resultado, você pode multiplicar a matriz original pela inversa (tanto a sua como a do gabarito) . O resultado deve ser a matriz identidade (pois se a inversa existe, então A_n A_n^{-1} = A_n^{-1} A_n = I_n). Assim você terá certeza da resposta.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}