por Angelica Abdalla » Dom Set 04, 2011 23:09
A questão é a seguinte:
Verifcar geometricamente e ilustrar graficamente com exemplos as seguintes propriedades do determinante para matrizes
2 x 2 e 3 x 3:
(i) Se B é uma matriz obtida a partir de A multiplicando uma linha de A por um \alpha escalar > 0; então jdet(B)j = ®jdet(A)j
(ii) Se em uma matriz A uma linha pode ser escrita como uma combinação linear das outras, então det(A) = 0. (No caso 2x2 um vetor será múltiplo do outro. No caso 3 x 3, note que um vetor estará no plano gerado pelos outros dois, o que, visualmente, resultará em um sólido com volume igual a zero).
Resolução:
Definição: O determinante de uma matriz quadrada A=[a_ij ]é definido como:
det??A=?_p???(-1)?^J a_(1j_1 ) a_(2j_2 )…a_(nj_n ) ?,?
Onde J=J(j_1,j_2,…,j_n)é o número de inversões da permutação (j_1,j_2,…,j_n) e p indica que a soma ocorre sobre todas as permutações de (1,2,...,n) (existem n! permutações).
Podemos fazer as seguintes observações com relação a essa definição.
Obs.: (i) Em cada termo do somatório, existe um e apenas um elemento de cada linha e um, e apenas um, elemento de cada coluna da matriz:
(ii) O determinante também pode ser definido através da fórmula
det??A=?_p??(-1)^J a_(j_1 ) a_(j_2 )…a_(j_n n) ??
Propriedade 3) Se a linha de uma matriz é multiplicada por uma constante, o determinante fica multiplicado por esta constante.
Dem.: Segue-se imediatamente da observação (i).
Exemplo: |?(ka&kb@c&d)|=kad-kbc=k(ad-bc)=k|?(a&b@c&d)|
Ou Seja:
Se A=|?(1&2@3&4)|=4-6=-2
Sendo ?=2 o escalar escolhido para multiplicar a primeira linha de A formando assim a matriz:
B=|?(2.1&2.2@3&4)|8-12=-4
Como 2.(-2)=-4 fica provada a primeira propriedade.
ESTOU NO CAMINHO CERTO,
AGUARDO AJUDA OBRIGADA
-
Angelica Abdalla
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qua Jun 29, 2011 22:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Duvida no determinante
por igorcalfe » Dom Set 04, 2011 13:00
- 6 Respostas
- 3168 Exibições
- Última mensagem por igorcalfe

Qua Set 14, 2011 21:00
Matrizes e Determinantes
-
- [Determinante] Dúvida multiplicação
por Perestroika » Dom Mar 16, 2014 17:09
- 3 Respostas
- 4821 Exibições
- Última mensagem por Cleyson007

Dom Mar 16, 2014 18:29
Matrizes e Determinantes
-
- Matriz - Dúvida em Determinante
por noelsilva » Qui Ago 14, 2014 16:38
- 1 Respostas
- 6581 Exibições
- Última mensagem por Pessoa Estranha

Sex Ago 15, 2014 19:02
Matrizes e Determinantes
-
- [determinante] Dúvida!!! Me ajude por favor!!!
por Cleyson007 » Qua Jul 30, 2008 13:48
- 2 Respostas
- 4210 Exibições
- Última mensagem por Cleyson007

Dom Ago 03, 2008 00:41
Matrizes e Determinantes
-
- Determinante
por Jessi » Seg Abr 20, 2009 16:10
- 1 Respostas
- 3076 Exibições
- Última mensagem por Molina

Seg Abr 20, 2009 17:04
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.