• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida Pontos Colineares

Duvida Pontos Colineares

Mensagempor samuel_corf » Seg Abr 25, 2011 11:51

Olá, sou um analista de sistemas e me deparei com um problema aqui que na teoria seria simples, mais ta me dando a maior dor de cabeça.
O problema é o seguinte, preciso descobrir se 3 pontos no espaço são colineares, pela referência matemátcia que tenho, deveria jogar esses pontos em uma matriz e calcular o seu determinante, caso o determinante seja zero isso significa que os pontos são colineares.
Porém estou tendo dificuldades com este problema pois, suponhamos que existem 3 pontos onde o eixo z de todos é igual a zero, neste caso a determinante será sempre zero e não necessáriamente os pontos são colineares.

Será que poderiam me ajudar nessa questão?

Desde já agradeço
samuel_corf
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Abr 25, 2011 11:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharel em Ciência da Computação
Andamento: formado

Re: Duvida Pontos Colineares

Mensagempor LuizAquino » Seg Abr 25, 2011 14:26

A sua referência Matemática, como você mesmo percebeu, não está correta. Eu sugiro que você procure por um bom livro de Geometria Analítica.

Sejam A, B e C pontos no espaço. Esses pontos são colineares se e somente se \vec{AB} // \vec{AC} . Ou seja, se existe um escalar k tal que \vec{AB} = k\vec{AC}.

Fazendo A=(xa, ya, za), B=(xb, yb, zb) e C=(xc, yc, zc), temos que verificar se existe k tal que (xb-xa, yb-ya, zb-za) = k(xc-xa, yc-ya, zc-za).

Note que para isso acontecer devemos ter (xb-xa)/(xc-xa) = (yb-ya)/(yc-ya) = (zb-za)/(zc-za).

Atenção
Para não ocorrer divisão por zero, deve-se tomar cuidado com os casos nos quais (xc-xa)=0 ou (yc-ya)=0 ou (zc-za)=0.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Duvida Pontos Colineares

Mensagempor samuel_corf » Seg Abr 25, 2011 14:49

Obrigado Luiz Aquino, faz todo sentido o que você disse. Acho que agora conseguirei resolver meu problema. Vlw
samuel_corf
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Abr 25, 2011 11:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharel em Ciência da Computação
Andamento: formado

Re: Duvida Pontos Colineares

Mensagempor Phisic » Dom Jul 24, 2011 18:08

samuel_corf escreveu:Obrigado Luiz Aquino, faz todo sentido o que você disse. Acho que agora conseguirei resolver meu problema. Vlw



Ae Samuel, to enfrentado o problema em determinar uma formula computacional que retorne os possível pontos de uma reta no espaço, vc poderia me ajudar nisso?
Phisic
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Jul 21, 2011 12:32
Localização: Cascavel Pr.
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: Duvida Pontos Colineares

Mensagempor LuizAquino » Dom Jul 24, 2011 20:46

Phisic, vide o tópico:
Reta no espaço
viewtopic.php?f=106&t=5445
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59