• Anúncio Global
    Respostas
    Exibições
    Última mensagem

matrizes

matrizes

Mensagempor Abner » Dom Mai 15, 2011 23:11

Se a matriz T e de ordem 3x3 e a matriz D é de ordem 3x4 como obter a matriz aumentada sabendo que TM=D?
Abner
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Qua Jan 26, 2011 18:48
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: matrizes

Mensagempor Claudin » Seg Mai 16, 2011 01:41

"Se a matriz T e de ordem 3x3 e a matriz D é de ordem 3x4 como obter a matriz aumentada sabendo que TM=D?"

A pergunta seria qual ordem possui a matriz M?

Na multiplicação de matrizes o resultado sempre será uma matriz cuja ordem é o m da primeira
com o n da segunda matriz. Ou seja, aplicação simples da teoria de matriz
no caso a matriz M teria ordem de 3x4, pois TM=D.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: matrizes

Mensagempor benni » Seg Mai 16, 2011 15:46

Para você fazer a matriz ampliada deve formar (juntar) T(3x3) com D(3x4) onde tera MAmpliada(3x7).
benni
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Mar 02, 2011 15:06
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: matrizes

Mensagempor Abner » Seg Mai 16, 2011 19:51

Valeuu a ajuda.....
Abner
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Qua Jan 26, 2011 18:48
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: matrizes

Mensagempor lanca » Seg Mai 16, 2011 21:34

Oi Abner..
vc consegui algum caminho para o ex. de hj?
lanca
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Mai 15, 2011 00:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica
Andamento: formado

Re: matrizes

Mensagempor Abner » Seg Mai 16, 2011 22:39

Sim mas não sei se esta correto.No exer2 eu juntei as duas matrizes dadas formando uma só. E no exer3 atribui letras a matriz M e fiz a multiplicação achando os valores das mesmas que corresponde a matriz M.
Abner
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Qua Jan 26, 2011 18:48
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: matrizes

Mensagempor lanca » Seg Mai 16, 2011 23:22

Meu Deus!!!!

Vou tentar,por esse caminho, ver se consigo..
obrigada..
lanca
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Mai 15, 2011 00:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.