• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz

Matriz

Mensagempor Priscylla Ramona » Sex Dez 17, 2010 10:54

Tenho q responder uma lista de exercicios de matrizes, mais so consegui responder uma questão e nem sei se esta certa.

As questões são as seguintes:
Dada a matriz quadrada
1\begin{pmatrix}
   2 &-6   \\ 
  \frac{1}{3}  & -1
\end{pmatrix}
, Seja x o produto dos elementos da diagonal principal e seja y prodruto dos elementos da diagonal secundaria. Calcule x-y .

Eu vou colocar aqui o jeito q eu estava tentando resolver:
x= 2 e -1
y= \frac{1}{3} e -6
x-y=

(2+ (-1))- (\frac{1}{3} + (-6)
(1)-

não consegui sair daqui, se alguem puder me ajudar eu agradeço.
Priscylla Ramona
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Dez 17, 2010 10:30
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Matriz

Mensagempor dagoth » Sex Dez 17, 2010 11:18

x é o PRODUTO dos elementos da diagonal principal.
y é o PRODUTO dos elemenyos da diagonal secundaria.

logo, x = 2 * - 1 = -2
y = 1/3 * - 6 = -2

x - y = -2 - (-2) = -2 + 2 = 0.
dagoth
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Dez 16, 2010 21:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Ciência da Computação
Andamento: cursando

Re: Matriz

Mensagempor Priscylla Ramona » Sex Dez 17, 2010 11:33

Muito obrigada!
me ajudou muito.
Priscylla Ramona
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Dez 17, 2010 10:30
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Matriz

Mensagempor Priscylla Ramona » Sex Dez 17, 2010 13:26

respondi essa matriz e não sei se tah certa.
Dado A= \begin{pmatrix}
   2 & 1  \\ 
   0 & -1 
\end{pmatrix}

B=\begin{pmatrix}
   1 & 1  \\ 
   2 & 0 
\end{pmatrix}
C=\begin{pmatrix}
   1 & 4  \\ 
   -1 & 3
\end{pmatrix}
Determine 2A-C+2(A+B-C)
2\begin{pmatrix}
   2 & 1  \\ 
   0 & -1 
\end{pmatrix}-\begin{pmatrix}
   1 & 4  \\ 
   -1 & 3 
\end{pmatrix}+2\begin{pmatrix}
   2 & 1  \\ 
   0  & -1 
\end{pmatrix}+\begin{pmatrix}
   1 & 1  \\ 
   2 & 0 
\end{pmatrix}-\begin{pmatrix}
   1 & 4  \\ 
   -1 & 3 
\end{pmatrix}


2\begin{pmatrix}
   2 & 1  \\ 
   0 & -1 
\end{pmatrix}-\begin{pmatrix}
   1 & 4  \\ 
   -1 & 3 
\end{pmatrix}+2\begin{pmatrix}
   3 & 2  \\ 
   2 & -1 
\end{pmatrix}-\begin{pmatrix}
   1 & 4  \\ 
   -1 & 3 
\end{pmatrix}

2\begin{pmatrix}
   2 & 1  \\ 
   0 & -1 
\end{pmatrix}-\begin{pmatrix}
   1 & 4  \\ 
   -1 & 3 
\end{pmatrix}+2\begin{pmatrix}
   2 & -2  \\ 
   -1 & 2 
\end{pmatrix}


2\begin{pmatrix}
   2 & 1  \\ 
   0 & -1 
\end{pmatrix}-\begin{pmatrix}
   1 & 4  \\ 
   -1 & 3 
\end{pmatrix}+2\begin{pmatrix}
   2 & -2  \\ 
   -1 & 2 
\end{pmatrix}


\begin{pmatrix}
   4 & 2  \\ 
   0 & -2 
\end{pmatrix}-\begin{pmatrix}
   1 & 4  \\ 
   -1 & 3 
\end{pmatrix}+\begin{pmatrix}
   4 & -4  \\ 
   -2 & 4 
\end{pmatrix}


\begin{pmatrix}
   7 & -6  \\ 
   -3 & 9 
\end{pmatrix}

Se puderem me dizer se esta certo eu agradeço.
Priscylla Ramona
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Dez 17, 2010 10:30
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Matriz

Mensagempor dagoth » Sex Dez 17, 2010 14:10

esta errada.

\begin{pmatrix} 3 & 2 \\ 2 & -1 \end{pmatrix}-\begin{pmatrix} 1 & 4 \\ -1 & 3 \end{pmatrix}

resulta em
2 -2
3 -4
dagoth
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Dez 16, 2010 21:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Ciência da Computação
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.