• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercícios de Matrizes

Exercícios de Matrizes

Mensagempor Cleyson007 » Sáb Jul 26, 2008 18:20

Olá, boa tarde!!!

Estou estudando matrizes e determinantes... e estou com duas questões que estou com dúvidas ( quanto à 1ª, gostaria de saber se está correto o modo que a resolvi!!!, quanto à 2ª, não estou conseguindo resolver e gostaria que me ajudasse.)

As questões são essas --> 01) (FGV) Considere a equação matricial AX=B, onde A=
\begin{pmatrix}
   3 & 1  \\ 
   2 & m 
\end{pmatrix}; B=
\begin{pmatrix}
   4 \\ 
   0  
\end{pmatrix}; X=
\begin{pmatrix}
   x \\ 
   y  
\end{pmatrix}
a) Para que valores de m a equação tem solução única?
b) Resolva a equação para m=0.

Resolvi da seguinte maneira ---> a) \begin{pmatrix}
   3 & 1  \\ 
   2 & m 
\end{pmatrix}. \begin{pmatrix}
   x\\ 
   y 
\end{pmatrix}=\begin{pmatrix}
   4\\ 
   0 
\end{pmatrix}.

Resolvendo a multiplicação das matrizes, encontrei as duas equações: 3x+y=4   e   2x+my=0.

Calculei o determinante dessas duas equações (que formam um sistema), observando que o problema diz que o valor de mtem que fazer com que a equação possua solução única (SPD-Sistema Possível e Determinado), ou seja D tem que ser diferente de 0.

Encontrei como resultado m\neq\frac{2}{3}.

02) (FGV) A matriz A é inversa da matrizB.
A=
\begin{pmatrix}
   x & 1  \\ 
   5 & 3 
\end{pmatrix} B=
\begin{pmatrix}
   3 & -1  \\ 
   y &  2 
\end{pmatrix}.
Nessas condições, podemos afirmar que a soma x+y vale:

a) -1 b) -2 c) -3 d) -4 e) -5

*Acredito eu que a questão está dizendo que A=\frac{1}{B}, mas, não consegui resolvê-la por aí de maneira alguma!!!

Gostaria que me ajudasse!!!

Até mais.
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Exercícios de Matrizes

Mensagempor admin » Sáb Jul 26, 2008 19:28

Olá Cleyson, boa noite!

A resolução 1 está sim correta.

O que a questão 2 diz, pela definição de matriz inversa, é que o produto entre A e B é igual à matriz identidade de ordem 2, pois A é inversa de B.

Pensando inicialmente na inversa de B, pela definição temos:
B \cdot B^{-1} = B^{-1} \cdot B = I_2

Mas como B^{-1} é única e A = B^{-1}, segue que:

B \cdot A = A \cdot B = I_2

Lembrando que:

I_2 = 
\begin{bmatrix}
   1 & 0  \\ 
   0 & 1 
\end{bmatrix}



Após fazer o produto, considere a definição de igualdade entre matrizes para encontrar os valores de x e y. Você deverá obter a alternativa (c) para a soma procurada.

Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Exercícios de Matrizes

Mensagempor Cleyson007 » Dom Ago 24, 2008 17:42

fabiosousa escreveu:Olá Cleyson, boa noite!

A resolução 1 está sim correta.

O que a questão 2 diz, pela definição de matriz inversa, é que o produto entre A e B é igual à matriz identidade de ordem 2, pois A é inversa de B.

Pensando inicialmente na inversa de B, pela definição temos:
B \cdot B^{-1} = B^{-1} \cdot B = I_2

Mas como B^{-1} é única e A = B^{-1}, segue que:

B \cdot A = A \cdot B = I_2

Lembrando que:

I_2 = 
\begin{bmatrix}
   1 & 0  \\ 
   0 & 1 
\end{bmatrix}



Após fazer o produto, considere a definição de igualdade entre matrizes para encontrar os valores de x e y. Você deverá obter a alternativa (c) para a soma procurada.

Bons estudos!


Olá Fabio Sousa!

Pelo que deu para entender o resultado vai ser encontrado pelo produto da matriz A pela matriz B.

Efetuei o produto e igualei à identidade, encontrando um sistema nas incógnitas x e y.

Para x encontrei o valor: x=2.
Para y encontrei o valor: y=-5.

Como pede-se x+y, encontrei -3.

Muito obrigado por me ensinar o raciocínio da questão Fabio Sousa.

Forte abraço.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.