por natanskt » Sex Nov 26, 2010 17:32
O CONJUNTO SOLUÇÃO DA INEQUAÇÃO:

<OU= 0
A-)K E R/-4<=K<=1
D-)KE R/K<=-4 OU K>=1
TEM OUTRAS OPÇÃO:
MINHA RESPOSTA:
K^2+3K-4>=0
X=1
X=-4
COMO INTERPETRAR ISSO E FORMAR O RESULTADO?? PODE ME ENSINAR
-
natanskt
- Colaborador Voluntário

-
- Mensagens: 176
- Registrado em: Qua Out 06, 2010 14:56
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: nenhum
- Andamento: cursando
por DanielFerreira » Seg Nov 29, 2010 19:44
Natanskt,
deve dar uma "olhada" em Função do 2° grau.
- k² + 3k + 4 <= 0
(- k - 4)(k - 1) <= 0
- k - 4 <= 0
- k <= 4
k >= - 4
k - 1 <= 0
k <= 1
Estudando os sinais...
___-____(- 4)____+____(1)____-_____
o sinal da eq. inicial é <= (menos)
daí,
x <= - 4 ou x >= 1
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Elcioschin » Ter Nov 30, 2010 14:00
Danrj
Há necessidade de uma pequena correção (raízes):
- k² + 3k + 4 =< 0 ----> Raízes k = -1 e k = 4 -----> k =< - 1 ou k >= 4
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por DanielFerreira » Qua Dez 01, 2010 17:07
Obrigado Elcio.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (ESPCEX)Função
por natanskt » Sex Out 15, 2010 23:48
- 1 Respostas
- 1600 Exibições
- Última mensagem por DanielRJ

Sáb Out 16, 2010 00:30
Funções
-
- (ESPCEX)Função
por natanskt » Ter Out 19, 2010 10:20
- 2 Respostas
- 3672 Exibições
- Última mensagem por MarceloFantini

Ter Out 19, 2010 17:42
Funções
-
- (ESPCEX)Função
por natanskt » Ter Out 19, 2010 10:38
- 2 Respostas
- 4012 Exibições
- Última mensagem por natanskt

Qua Out 20, 2010 10:05
Funções
-
- (ESPCEX)Função
por natanskt » Ter Out 19, 2010 10:47
- 1 Respostas
- 3177 Exibições
- Última mensagem por MarceloFantini

Ter Out 19, 2010 17:32
Funções
-
- (ESPCEX)Função
por natanskt » Ter Out 19, 2010 10:52
- 1 Respostas
- 2471 Exibições
- Última mensagem por DanielRJ

Ter Out 19, 2010 16:10
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.