• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressões Geométricas

Progressões Geométricas

Mensagempor Anderson Alves » Ter Abr 24, 2012 23:08

Olá Pessoal.

Tenho dúvidas nesse exercício.
1) Numa progressão geométrica de cinco termos a soma dos dois primeiros é 35 e a soma dos dois últimos é 2240.
Calcule o terceiro termo!

Resp.: 112

Grato pela ajuda.
Anderson Alves
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Sex Fev 24, 2012 22:39
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Informática
Andamento: formado

Re: Progressões Geométricas

Mensagempor Cleyson007 » Qua Abr 25, 2012 11:42

Bom dia Anderson!

Numa P.G., temos:

Termo Geral: {a}_{n}={a}_{1}.{q}^{n-1}
Soma dos termosda P.G.: {S}_{n}=\frac{{a}_{1}({q}^{n}-1)}{q-1}

2240={a}_{1}{q}^{3}+{a}_{1}{q}^{4}
2240={a}_{1}{q}^{3}(1+q)

35={a}_{1}+{a}_{1}q\Leftrightarrow35={a}_{1}(1+q)

\frac{2240}{35}={q}^{3}\Rightarrow q=4

Muito bem, encontramos o valor da razão! Agora fica mais fácil..

35={a}_{1}+{a}_{1}q

{a}_{1}=7

{a}_{3}={a}_{1}{q}^{2}

{a}_{3}=112

Comente qualquer dúvida :y:
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Progressões Geométricas

Mensagempor Russman » Qua Abr 25, 2012 20:00

Eu tenho uma resolução diferente.

Se a P.G. tem apenas 5 termos então façamos que o terceiro termo seja simplismente x. Assim, a P.G. é, de razão q,

P = \left \{ \frac{x}{q^{2}},\frac{x}{q},x,xq,x{q}^{2} \right \} .

O problema diz que

\left\{\begin{matrix}
\frac{x}{q^{2} }+ \frac{x}{q} = 35\\
xq + xq^{2} = 2240 

\end{matrix}\right.

Da primeira linha obtemos x\left( \frac{q + {q}^{2}}{{q}^{3}} \right) = 35 e da segunda x(q + {q}^{2}) = 2240. Assim,

\frac{x}{{q}^{3}}.\frac{2240}{x} = 35 \Rightarrow q = 4.

Portanto,

x = \frac{2240}{q + {q}^{2}} = \frac{2240}{4+16} = 112,

que é naturalmente o 3° termo. (:
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: