por sony01 » Seg Mar 05, 2012 21:39
Analise as seguintes afirmações:
I - Se x e y são números reais positivos então

=

.
II - Para quaisquer números reais x e y, tem-se

.
III - A igualdade

vale para quaisquer números reais não nulos x e y.
IV - Se x é um número real tal que

então

Pode-se dizer que:
a) Apenas uma afirmação é verdadeira.
b) Apenas duas afirmações são verdadeiras.
c) Apenas três afirmações são verdadeiras.
d) Todas as afirmações são verdadeiras.
CálculoI - Se x e y são números reais positivos então
=
.
1ª Afirmação Verdadeira.II - Para quaisquer números reais x e y, tem-se
.

Logo,
2ª Afirmação Falsa.III - A igualdade
vale para quaisquer números reais não nulos x e y.
3ª Afirmação Falsa.IV - Se x é um número real tal que
então 
Se 0 < x < 1 , logo

é < que

Logo,
4ª Afirmação FalsaResposta Certa Letra A: Apenas uma afirmação é verdadeira.
Eu não sei se eu acertei no cálculo e também não possuo o gabarito da questão, espero que possam me ajudar.
Desde já Agradeço!
-----------
Obs.: Primeira Postagem no Fórum!

"Quem estuda sabe mais" - Filosofia de vida!
-
sony01
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Dom Mar 04, 2012 16:28
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: Inglês
- Andamento: cursando
por fraol » Seg Mar 05, 2012 22:32
Para a letra a) pense, por exemplo em x = 1 e y = 2. O seu desenvolvimento não está correto. Pense, primeiramente em elevar ao quadrado ambos os membros da expressão original e tente desenvolver a partir disso.
A letra b) é uma afirmação válida. Você quer tentar fatorar novamente?
A sua conclusão para a letra c) está correta mas, há um erro de passagem que você acabou corrigindo na sequência.
A letra d) está correta.
Se não conseguir algum desenvolvimento manda a dúvida pra cá.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Números Reais - Simplificar números reais
por ZANGARO » Ter Nov 15, 2011 18:46
- 0 Respostas
- 1853 Exibições
- Última mensagem por ZANGARO

Ter Nov 15, 2011 18:46
Álgebra Elementar
-
- [hipótese da indução] Indução matemática
por leonardoandra » Sáb Out 12, 2013 22:58
- 1 Respostas
- 2498 Exibições
- Última mensagem por leonardoandra

Seg Out 14, 2013 20:10
Equações
-
- Números reais
por citadp » Dom Jun 24, 2012 16:02
- 1 Respostas
- 1658 Exibições
- Última mensagem por e8group

Dom Jun 24, 2012 19:22
Cálculo: Limites, Derivadas e Integrais
-
- Numeros reais
por vihalmeida » Qui Nov 15, 2012 15:19
- 1 Respostas
- 2085 Exibições
- Última mensagem por DanielFerreira

Qui Nov 15, 2012 18:40
Álgebra Elementar
-
- Estimativa de numeros reais
por Roni Martins » Qui Fev 25, 2010 15:51
- 1 Respostas
- 2250 Exibições
- Última mensagem por Molina

Qui Fev 25, 2010 18:30
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.