por RicardoSouza » Sex Fev 17, 2012 20:30
Como eu poderia provar por indução, PARA N+1, que

?
Desde já, grato.
Editado pela última vez por
RicardoSouza em Sáb Fev 18, 2012 21:42, em um total de 1 vez.
-
RicardoSouza
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sex Fev 17, 2012 15:03
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por nietzsche » Sáb Fev 18, 2012 01:11
(q-1)^2 não é igual a
q - 2q + 1, mas
(q - 1)^2 = (q-1)(q-1) = q^2 -q - q +1 = q^2 -2q+1.
q é diferente de 1, então vc pode simplificar esse termo, não precisa abrir a expressão.
-
nietzsche
- Usuário Parceiro

-
- Mensagens: 99
- Registrado em: Qua Jan 12, 2011 14:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por RicardoSouza » Sáb Fev 18, 2012 16:25
nietzsche escreveu:(q-1)^2 não é igual a
q - 2q + 1, mas
(q - 1)^2 = (q-1)(q-1) = q^2 -q - q +1 = q^2 -2q+1.
q é diferente de 1, então vc pode simplificar esse termo, não precisa abrir a expressão.
Ok, Muito Obrigado. Esqueci de elevar ao quadrado quando fui digitar em Tex.
Perdoe minha ignorância, mas tenho que chegar à

(fórmula da soma dos termos de uma PG), para provar para n=1?
E ainda, se eu quiser provar a validade para n+1, como procedo? Que dados devo utilizar além da hipótese? Poderia desenvolver um início com esses dados, para que eu possa ter uma noção de como desenvolver a prova?
Desculpe-me pelo incômodo.
-
RicardoSouza
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sex Fev 17, 2012 15:03
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Victor Neumann » Sex Fev 24, 2012 05:44
-
Victor Neumann
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Fev 23, 2012 21:37
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por nietzsche » Sex Mar 02, 2012 03:11
Ricardo Souza,
para n=1, você deve verificar a validade da expressão que você está querendo provar. No seu caso está faltando dados no enunciado. Se você substituir n por 1, você obtém uma fórmula a expressão de S1. Dê uma olhada em
http://ecalculo.if.usp.br/ferramentas/pif/pif.htm pra você entender os passos pra se provar por indução. Também tem alguns exercícios resolvidos.
-
nietzsche
- Usuário Parceiro

-
- Mensagens: 99
- Registrado em: Qua Jan 12, 2011 14:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Prova por Indução] Progressão Aritmético-Geométrica
por MateusDantas1 » Qui Fev 16, 2012 15:07
- 10 Respostas
- 7456 Exibições
- Última mensagem por Victor Neumann

Qui Fev 23, 2012 21:57
Progressões
-
- Uma prova por indução
por alexandre32100 » Ter Ago 17, 2010 01:11
- 2 Respostas
- 3255 Exibições
- Última mensagem por Guill

Qui Mai 03, 2012 00:01
Desafios Difíceis
-
- Prova por Indução
por Wania123 » Seg Jan 18, 2016 10:15
- 1 Respostas
- 4117 Exibições
- Última mensagem por adauto martins

Dom Jan 24, 2016 13:41
Cálculo: Limites, Derivadas e Integrais
-
- Soma de uma série em Progressão
por Carolziiinhaaah » Qua Jun 16, 2010 12:06
- 1 Respostas
- 2321 Exibições
- Última mensagem por Elcioschin

Qua Jun 16, 2010 13:18
Progressões
-
- [progressão Aritmética] sequência com soma
por JKS » Dom Mar 17, 2013 14:16
- 1 Respostas
- 1189 Exibições
- Última mensagem por e8group

Dom Mar 17, 2013 15:07
Aritmética
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.