por jose henrique » Sáb Out 09, 2010 18:03
os valores de x de modo que

mas eu não consegui achar q, pois se pegarmos a2/a1= 1/9 se pegarmos a4/a3 = 1/2.
e para resolver está questão eu teria que achar o valor de q. o que faço?
-
jose henrique
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qui Ago 12, 2010 20:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: outros
- Andamento: formado
por Elcioschin » Sáb Out 09, 2010 20:24
Isto NÃO é uma PG. É uma série diferente.
Poderia até ser a soma de duas ou mais PGs. Para descobrir seria necessário conhecer pelo menos mais dois termos.
O enunciado é somente isto mesmo?
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por jose henrique » Sáb Out 09, 2010 20:40
seria sim
-
jose henrique
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qui Ago 12, 2010 20:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: outros
- Andamento: formado
por DanielRJ » Sáb Out 09, 2010 21:23
jose henrique escreveu:seria sim
acho que erram ai no lugar do 9 seria o 2
-

DanielRJ
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Sex Ago 20, 2010 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Elcioschin » Dom Out 10, 2010 13:19
Acho que o Daniel acertou na mosca:
x² - x²/2 + x²/4 - x²/8 = 6
x²*(1 - 1/2 + 1/4 - 1/8 + .....) = 6
Agora temos uma PG decrescente infinita de razão r = - 1/2 ----> S = a1/[1 - q] ----> S = 1/[1 - (-1/2)] ----> S = 1/(3/2) ----> S = 2/3
x²*(2/3) = 6 ----> x² = 3*6/2 ----> x² = 9 ----> x = +3 ou x = -3
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por jose henrique » Qui Out 28, 2010 22:47
obrigado!
-
jose henrique
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qui Ago 12, 2010 20:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: outros
- Andamento: formado
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- O limite da soma de um pg
por jose henrique » Sáb Out 09, 2010 17:45
- 6 Respostas
- 2863 Exibições
- Última mensagem por MarceloFantini

Sáb Out 09, 2010 21:29
Progressões
-
- Limite: Da soma
por Victor Gabriel » Sex Mai 10, 2013 11:49
- 0 Respostas
- 655 Exibições
- Última mensagem por Victor Gabriel

Sex Mai 10, 2013 11:49
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] soma de cubos
por beel » Dom Set 18, 2011 16:49
- 4 Respostas
- 2030 Exibições
- Última mensagem por beel

Dom Out 16, 2011 17:09
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] DÚVIDA - soma de quadrados
por beel » Dom Set 18, 2011 17:40
- 3 Respostas
- 1720 Exibições
- Última mensagem por beel

Dom Out 16, 2011 17:07
Cálculo: Limites, Derivadas e Integrais
-
- Integral da soma/Soma das Integrais.
por Sobreira » Ter Abr 30, 2013 17:41
- 0 Respostas
- 2011 Exibições
- Última mensagem por Sobreira

Ter Abr 30, 2013 17:41
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.