• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressão Geométrica, envolvendo nºs complexos

Progressão Geométrica, envolvendo nºs complexos

Mensagempor Loretto » Sáb Out 02, 2010 22:10

Dado o complexo z = -?2 / 2 + i?2/2 , calcule :

c) 1 + z + z² + z^3 + ....+ z^23

Tentei jogar na forma trigonométrica, mas calcule z^20 e depois z^3 , assim :

Rô = ? ( -?2/2 )^2 + (?2/2)^2
Rô = ?1/2 + 1/2 = ?1 = 1

Z^n = 1^n . ( cos (-n.?/4) + i.sen ?/4)
Z^20 = 1^20.[ cos (-20?/4) + i.sen (20?/4)]
Z^20 = -1 + 0.i
Agora, calculando Z^3

Z^3 = 1^3.[cos (3?/4) + i.sen (3?/4)]
Z^3 = -?2 / 2 + i?2/2
Assim, Z^20 . Z^3 = Z^23

(-1 + 0.i) . (-?2 / 2 + i?2/2) = ?2 / 2 - i?2/2
Passando para a Fórmula da SOMA GERAL DA P.G. :

Sn = a1 . (q^n - 1) / (q - 1)
S23 = Z. (Z^22 - 1) / (Z - 1)
S23 = (-?2 / 2 + i?2/2) . (1i - 1) / (-?2 / 2 - 1 + i?2/2)
S23 = (-?2 / 2 + i?2/2) . (1i - 1) / (-?2 -2 / 2 + i?2/2)
S23 = -?2i / ( -?2 -2 / 2 + i?2/2)
S23 = (0/-?2 -2 / 2) + ( -?2i / i?2/2)
S23 = - 1/2

1 + S23 = 1 - 1/2 = 1/2
Loretto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Dom Jul 25, 2010 01:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: exatas
Andamento: cursando

Re: Progressão Geométrica, envolvendo nºs complexos

Mensagempor Elcioschin » Seg Out 04, 2010 12:43

Refazendo suas contas:

O termo real de z é - V2/2

z = - V2/2 + i*V2/2 ----> z = cos135º + i*sen135º

z^23 = cos(23*135º) + i*sen(23*135º) ----> z^23 = cos3105º + i*sen3105º ----> z^23 = cos225º + i*sen225º ----> z^23 = - V2/2 - i*V2/2

Continue a partir daí
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59