• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[P.A.] Está correto?

[P.A.] Está correto?

Mensagempor Cleyson007 » Dom Mai 25, 2008 19:37

Olá Fabio Sousa, boa noite!!!!

Observe o meu raciocínio ao resolver a questão abaixo.

Um pêndulo, oscilando, percorre sucessivamente
18 cm, 15 cm, 12 cm, … A soma dos percursos
até o repouso é:

a) 45 cm. c) 90 cm. e) nda.
b) 63 cm. d) 126 cm.

No meu modo de pensar quando o pêndulo atingir o repouso, {a}_{n} seria igual a 0.

{a}_{n} = {a}_{1}+(n-1)r ------> 0 = 18 + (n - 1)(-3) coloquei o - 3 por ser decrescente.

0 = 18 - 3n + 3

0= 21 - 3n

- 21= -3n n = 7

Por estar pedindo a soma dos percursos até o repouso -------> {s}_{n} = ({a}_{1}+ {a}_{n}).n / 2

{s}_{n} = (18 + 0) (7) / 2

{s}_{n} = 126/2

\Rightarrow {s}_{n} = 63 cm alternativa b

Está certo o raciocínio?

Um abraço.

Até mais
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Está correto?

Mensagempor admin » Dom Mai 25, 2008 19:55

Olá Cleyson, boa noite!

Está correto sim.

Até mais!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}