• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão sobre PA e PG

Questão sobre PA e PG

Mensagempor Carolziiinhaaah » Qua Jun 16, 2010 17:35

Seja (x; y; z; w) uma progressão aritmética crescente cuja soma é 10 e (a; b; c; d) uma progressão geométrica com a + b = 1 e c + d = 9. Se ambas as sequências têm a mesma razão, então o produto y. w é.. ?

gabarito: 7
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Questão sobre PA e PG

Mensagempor karla_paula » Qua Jun 16, 2010 19:17

a+b=1

c+d=9

{a}_{1}+{a}_{1}.q=1
{a}_{1}{q}^{2}+{a}_{1}.{q}^{3}=9
\frac{{a}_{1}.(1+q)=1}{{a}_{1}.{q}^{2}.(1+q)=9}
q=\frac{1}{3}
x+y+z+w=10==>x+x+\frac{1}{3}+x+\frac{2}{3}+x+1=10 => x=2
{a}_{1}=x
{a}_{2}=x+r =x+\frac{1}{3}=\frac{7}{3}

{a}_{3}=x+2r=x+\frac{2}{3}

{a}_{4}=x+3r=x+1=3

entao :y.w= \frac{7}{3}.3=7
karla_paula
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Jun 12, 2010 08:09
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: Questão sobre PA e PG

Mensagempor Carolziiinhaaah » Qua Jun 16, 2010 20:50

Só não entendi uma coisa, Karla.. Para achar a razão da PG, não teríamos que dividir os termos posteriores pelos anteriores? ou seja, o (c + d) por (a + b) ao invés do contrário? =/ pois para achar a razão da PG entre 2 termos pelo menos é assim, certo? b/a = q; c/b = q... só não entendi isso mesmo =/
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Questão sobre PA e PG

Mensagempor karla_paula » Qui Jun 17, 2010 11:28

realmente vç esta correta e por acaso o que eu fiz deu certo , mas a resposta correta esta abaixo

a+b =1 e c+d =9
\frac{{a}_{1}{q}^{2}+{a}_{1}{q}^{3}=9}{{a}_{1}+{a}_{1}q=1}

{q}^{2}=9=+- 3
x+y+z+w=10
x+x+r+x+2r+x+3r=10  =>4x+6.3=10 =>x=-2
y=x+r=-2+3=1
w=x+3r=-2+3.3=7
y.w=1.7=7
karla_paula
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Jun 12, 2010 08:09
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: Questão sobre PA e PG

Mensagempor karla_paula » Qui Jun 17, 2010 11:33

nao usamos o -3 por que é uma PA crescente
karla_paula
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Jun 12, 2010 08:09
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: Questão sobre PA e PG

Mensagempor Carolziiinhaaah » Qui Jun 17, 2010 13:31

OK! Muito obrigada pela resolução e por esclarecer essa minha dúvida, Karla :-D
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}