• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Soma n termos ] mostre que ....

[Soma n termos ] mostre que ....

Mensagempor e8group » Qui Nov 08, 2012 19:08

Alguém sabe onde encontro a demonstração abaixo , não quero apenas indução fraca ou forte . Quero desenvolver o lado esquerdo e chegar no lado direito da seguinte expressão .

\sum_{j} =  1 + 2 +  \cdots + n  =  \frac{ n (n+1) }{2} .


Em seguida , vou deixar minha solução e gostaria de saber como vc's desenvolveriam .


Solução :


\sum_{j= 1}^n j  = \sum_{j=1} ^n   (n -(n-j)) =  n^2  - \sum_{j=1}^n (n-j) .


Mas , \sum_{j=1}^n j  =  \sum_{j=0}^n (n-j)  =  n + \sum_{j=1}^n (n-j) ou seja \sum_{j=1}^n (n-j)   = \left(\sum_{j=1}^n j \right ) -n .


Daí ,


\sum_{j=1}^{n} j  =   \sum_{j=1}^n (n - (n-j))  = n^2  - \sum_{j=1}^n(n-j)  = n^2 -  \left(\left(\sum_{j=1}^n j \right ) -n  \right )  =  n^2 +n - \sum_{j=1}^n j .


Somando \sum_{j=1}^n j em ambos lados da igualdade vamos obter que ,


\sum_{j=1}^n j+ \sum_{j=1}^n j  =   \sum_{j=1}^n (j+j) =  \sum_{j=1}^n (2j) =  2 \sum_{j=1}^n j  =    n^2 +n - \sum_{j=1}^n j +  \sum_{j=1}^n j =  n^2 +n + \sum_{j=1}^n( j -j) =  n^2 + n


e finalmente , multiplicando toda igualdade por 1/2 ,


2^{-1} \left(2 \sum_{j=1}^n j \right ) = 2^{-1} (n^2 +n)

teremos que ,



\sum_{j=1}^n j  =   \frac{ n^2 + n }{2}  =  \frac{ n (n+1) }{2} .



Agora que cheguei no lado direito através do esquerdo , posso provar por indução que vale para n + 1 ou melhor ainda mostro que vale para n-1 e para n+1 .



OBS.: Alguém de vc's conhecem algum livro que posso deparar com exercícios como este acima e também sobre indução matemática .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Soma n termos ] mostre que ....

Mensagempor MarceloFantini » Qui Nov 08, 2012 19:17

Seja S_n = 1 + 2 + \cdots + n = n + n-1 + \cdots + 1. Somando ambas, temos 2 S_n = (n+1) + (n-1+2) + \cdots + (1 + n). Ao fazer isto efetuamos n somas, daí

2 S_n = \underbrace{ (n+1) + (n-1+2) + \cdots + (1+n)}_{\text{n vezes}} = n(n+1)

e portanto S_n = \frac{n(n+1)}{2}.

É a demonstração mais interessante que eu conheço. Nem tudo é possível desenvolver de um lado e chegar no outro.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Soma n termos ] mostre que ....

Mensagempor e8group » Qui Nov 08, 2012 19:31

OK ! Na verdade esta eu fiz aqui também, realmente é muito boa , foi a primeira que fiz da mesma forma q vc . Mas ,como gostaria de fazer de uma outra forma que leve ao mesmo caminho optei por esta acima também . Na sua opinião , minha demostração também é aceita da mesma forma que a sua ?

Obrigado pela atenção .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Soma n termos ] mostre que ....

Mensagempor e8group » Qui Nov 08, 2012 20:32

Marcelo , esta demonstração abaixo é a outra que eu fiz também , como relatei antes . Note que é a mesma coisa que vc fez , só utilizei somatório por ser compacto .


\sum k =  n+ \sum(n- k)  \implies       \sum k + \sum k =  \sum(k +k) =  2 \sum k =     n + \sum(n-k)  + \sum k =   n +  \sum(n- k + k) = n + \sum n =  n + n^2  = n(n+1)


Portanto , \sum k   =   1 + 2 + \cdots +  n  =   \frac{(n+1)n}{2}


OBS.: \sum k   =  \sum_{k= 1} ^n   k
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.