• Anúncio Global
    Respostas
    Exibições
    Última mensagem

P.A

P.A

Mensagempor Douglaspimentel » Seg Ago 09, 2010 19:48

(UFF-RJ) determine o valor de x na equação: logx + logx2 + log x3 + ... log x18=342
Obs: x elevado ao quadrado + x elevado ao cubo + ... + x elevado à decima oitava potencia = 342
Douglaspimentel
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Sex Mar 05, 2010 12:42
Formação Escolar: ENSINO MÉDIO
Área/Curso: nada
Andamento: cursando

Re: P.A

Mensagempor Pedro123 » Seg Ago 09, 2010 20:28

Fala douglas, seguinte, temos então a soma:

Logx + Logx^2 + logx^3 + ... + logx^18 = 342. beleza, mas para resolver essa equação, lembrar do fato de que:

log A + log B = LogA.B, assim:

Logx + Logx^2 + logx^3 + ... + logx^18 = Logx . x^2.x^3 ... x^18, como é um produto de bases iguais, matém-se a base e soma-se os expoentes, logo:

Logx . x^2.x^3 ... x^18 = Log x^1+2+3+...+18 = 342, é ai que entra a PA, para achar o valor do expoente de X mais rapidamente, devemos usar a famosa Soma dos Termos de um PA (Finita):

Sn = (a1 + an).n/2 , como são 18 termos:

S18 = (1 + 18).18/2 --> S18 = 19.9 =171.

logo, aquela soma gigantesca se transforma em:

Logx + Logx^2 + logx^3 + ... + logx^18 = Logx^171, portanto:

Logx^171 = 342, logo 10^342 = x^171, porém, 342 = 2 . 171, logo

logo 10^342 = x^171 --> (10^2)^171 = x^171, portanto, e finalmente:

X = 100.

abraços
Pedro123
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qui Jun 10, 2010 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica - 1° Período
Andamento: cursando

Re: P.A

Mensagempor Douglaspimentel » Seg Ago 09, 2010 21:24

Obrigadooooooooooooo!!!
Douglaspimentel
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Sex Mar 05, 2010 12:42
Formação Escolar: ENSINO MÉDIO
Área/Curso: nada
Andamento: cursando


Voltar para Progressões

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}