por yanagranhen » Seg Jun 21, 2010 22:06
(ufrs) Considere o enunciado abaixo, que descreve etapas de uma construção.Na primeira etapa,toma-se um quadrado de lado 1. Na segunda, justapoe-se um novo quadrado de lado 1 adjacente a cada lado do quadrado de lado inicial.Em cada nova etapa, justapoem-se novos quadrados de lado 1 ao longo da figura obtida na etapa anterior, como esta representado abaixo:
1ª Etapa
?
2ª Etapa
?
???
?
3ªº etapa
?
???
?????
???
?
4ª etapa
?
???
?????
???????
?????
???
?
Seguindo esse padrão de construção,pode-se afirmar que o numero de quadrados de lado 1 na
vigésima etapa é:
a)758
b)759
c)760
d)761e)762
Obs: Eu tentei resolver pela formula da PA de 2º ordem, usando o numero de quadrados como os elementos. Por exemplo a PA normal seria (1, 5, 13, 25,...) correspondente as 1a, 2a, 3a etc etapas respectivamente! Daí como a razao entre estes elementos gera uma PA de 2a ordem tal que (4, 8, 12,...) de razao constante igual a 4, utilizei a soma dos 20 primeiros termos desta PA de 2a ordem! Mas não deu certo!

Não acho resultado! Me ajudem!!!!!!!!!!!!!

-
yanagranhen
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qui Jun 17, 2010 00:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia florestal
- Andamento: cursando
por Cleyson007 » Seg Jun 21, 2010 22:36
Boa noite yanagranhen!
Primeiramente, seja bem vindo (a) ao fórum!
A P.A. segue essa ordem: (1,5,13, ...) segundo sua representação.
Você pode escrever essa mesma P.A. da seguinte forma: (1, 1+4, 1+4+8, ...)
Na vigésima etapa, teremos: (1+4+8+12+16+...an)
Repare que a P.A é constituída a partir do segundo termo (4) - ou seja, são somados 4 a partir do segundo termo.
Achando o termo geral: a19 = a1 + 18r --> a19 = 4 + 18(4) --> a19 = 76
Jogando na fórmula da soma: S = (4 + 76)(19) / 2
Logo, S = 760
A resposta correta não é 760, porque a P.A. é constituída a partir do 1.. mas é importante entender que o 1 faz parte da P.A.
Logo, S = 760 + 1 = 761 (Alternativa d)
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por yanagranhen » Seg Jun 21, 2010 23:16
Muito obrigada Cleyson007!
Acredita que tava errando multiplicação basica?
É, falta de atenção, devo estar dispersa!
Obrigada!
Abçs
-
yanagranhen
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qui Jun 17, 2010 00:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia florestal
- Andamento: cursando
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- PG Termo geral
por apotema2010 » Seg Mar 01, 2010 10:18
- 2 Respostas
- 1990 Exibições
- Última mensagem por apotema2010

Qua Mar 03, 2010 11:10
Progressões
-
- [Termo geral]
por GrazielaSilva » Dom Set 30, 2012 15:24
- 2 Respostas
- 1970 Exibições
- Última mensagem por GrazielaSilva

Qui Out 04, 2012 12:20
Progressões
-
- P.A termo geral
por Brendon » Sáb Fev 16, 2013 14:32
- 2 Respostas
- 3765 Exibições
- Última mensagem por Brendon

Sáb Fev 16, 2013 17:58
Progressões
-
- Mostre que (Termo Geral)
por Cleyson007 » Seg Jul 11, 2011 20:50
- 5 Respostas
- 2275 Exibições
- Última mensagem por LuizAquino

Ter Jul 12, 2011 09:59
Cálculo: Limites, Derivadas e Integrais
-
- [Progressão] Termo Geral da PA
por Jennifer Moreira » Sáb Out 22, 2011 11:20
- 2 Respostas
- 1703 Exibições
- Última mensagem por MarceloFantini

Sáb Out 22, 2011 15:17
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.