por Cleyson007 » Sex Jan 22, 2010 18:35
Boa tarde!
Estou bastante confuso com a resolução da questão abaixo. Alguém pode me ajudar?
Determine, usando as propriedades da divisão:
O polinômio mônico

de grau 5, tal que

Agradeço sua ajuda.
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por Elcioschin » Sex Jan 22, 2010 23:08
Polinômio mônico é aquele em que o coeficiente do termo de maior grau vale 1:
F(x) = x^5 + ax^4 + bx³ + cx² + dx + e
Para x = 0 ----> F(0) = e ----> 0 = e -----> e = 0
Para x = 1 -----> F(1) = 1 + a + b + c + d ------> a + b + c + d + 1 = 0
Para x = -1 ----> F(-1) = - 1 + a - b + c - d ----> a - b + c - d - 1 = 0
Somando ambas as equações ----> 2a + 2c = 0 ----> c = - a
Para x = 2 -----> F(2) = 32 + 16a + 8b + 4c + 2d ------> 8a + 4b + 2c + d + 16 = 0
Para x = -2 ----> F(-2) = - 32 + 16a - 8b + 4c - 2d ----> 8a - 4b + 2c - d - 16 = 0
Somando ambas ----> 16a + 4c = 0 -----> c = - 4a
Só é possivel para a = 0 e c = 0
Não dá para calcular b, d ---> Só temos ----> b + d = - 1
F(x) = x^5 + bx³ + dx com b + d + 1 = 0 ----> Só conseguí chegar até aqui.
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por MarceloFantini » Sáb Jan 23, 2010 21:59
Boa noite.
Mesmo que

e

sejam desconhecidos, a função ainda é:

Certo? Ainda não valem as relações

e

? Porque substituindo e resolvendo, encontrei

e

.
Um abraço.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por DENILSON RODRIGUES » Seg Fev 16, 2015 20:38
Boa noite,
Resolvi da seguinte maneira,
Para cada raiz descrita temos um termo (x-a) ou (x+a)que ira formar o polinômio, tal como : f(0) um termo "x" ; para f(1) um termo (x-1); para f(-1) um termo (x+1);
para f(2) m termo (x-2); para f(-2) um termo (x+2). Ao multiplicar todos os termos encontrados, temos:
(x)(x-1)(x+1)(x-2)(x+2)=0
(x^2 + 3x + 2)(x)(x^2 - 3x + 2)=0
(x^3 + 3x^2 + 2x)(x^2 - 3x + 2)=0
* (x^3)(x^2 - 3x + 2) = ( x^5 - 3x^4 + 2x^3 )
* (3x^2)(x^2 - 3x + 2) = ( + 3x^4 - 9x^3 + 6x )
* (2x)(x^2 - 3x + 2) = ( +2x^3 - 6x^2 + 4x )
+__________________________
x^5 + 0 - 5x^3 + 0 + 4x
logo: x^5 -5x^3 +4x é um polinômio mônico(o líder x^5 tem incógnita= 1) e suas raízes são:
f(0) => (0)(x-1)(x+1)(x-2)(x+2)= 0
f(-1)=> (x)(x-1)(-1+1)(x-2)(x+2)= (x)(x-1)(0)(x-2)(x+2)= 0
f(1) => (x)(1-1)(x+1)(x-2)(x+2)= (x)(0)(x+1)(x-2)(x+2)= 0
f(2) => (x)(x-1)(x+1)(2-2)(x+2)= (x)(x-1)(x+1)(0)(x+2)= 0
f(-2)=> (x)(x-1)(x+1)(x-2)(-2+2)= (x)(x-1)(x+1)(x-2)(0)= 0
Espero ter ajudado.
-
DENILSON RODRIGUES
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Fev 16, 2015 19:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [polinômio]Relações de Girard + raízes de polinômio
por matano2104 » Qui Set 05, 2013 17:02
- 1 Respostas
- 6974 Exibições
- Última mensagem por young_jedi

Qui Set 05, 2013 17:57
Polinômios
-
- Polinômio
por Cleyson007 » Qua Mai 13, 2009 15:18
- 3 Respostas
- 3706 Exibições
- Última mensagem por Molina

Sex Mai 15, 2009 06:46
Polinômios
-
- Polinômio
por Cleyson007 » Qua Jul 15, 2009 23:17
- 3 Respostas
- 2329 Exibições
- Última mensagem por DanielFerreira

Ter Set 22, 2009 12:06
Polinômios
-
- polinomio
por Carolina0991 » Qui Jan 28, 2010 12:50
- 2 Respostas
- 2256 Exibições
- Última mensagem por MarceloFantini

Qui Jan 28, 2010 14:41
Polinômios
-
- polinomio
por Carolina0991 » Qui Jan 28, 2010 21:09
- 1 Respostas
- 1593 Exibições
- Última mensagem por Elcioschin

Qui Jan 28, 2010 22:42
Polinômios
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.