• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[PG infinita com trigonometria] ITA-SP

[PG infinita com trigonometria] ITA-SP

Mensagempor JKS » Qui Abr 11, 2013 01:54

preciso de ajuda,desde já agradeço!

Seja \theta um valor fixado no intervalo \left[0,\frac{\pi}{2} \right]. Sabe-se que a1=cotg \theta é o primeiro termo de uma PG infinita de razão q = {sen}^{2}\theta.A soma de todos os termos dessa progressão é :

gabarito : sec \theta.cossec \theta
JKS
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Ago 01, 2012 13:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [PG infinita com trigonometria] ITA-SP

Mensagempor e8group » Qui Abr 11, 2013 13:27

A fórmula da Soma dos infinitos termos de uma progressão geométrica é :

S_{\infty} = \frac{a_1}{1-q} .

Caso tenha curiosidade de como chegar nesta fórmula ,veja :

S_{\infty} = a_1 \cdot q^0 + a_2 \cdot q^1 + a_3 q^2 + \hdots + a_n \cdot q^{n-1} + \hdots .

Ou ainda de forma compacta ,

S_{\infty} =   \sum_{k=1}^{\infty} a_1 \cdot q^{k-1} .

Agora note que \sum_{k=1}^{\infty} a_1 \cdot q^{k-1}  =  \sum_{k=0}^{\infty} a_1 \cdot q^{k}  = q \cdot \sum_{k=0}^{\infty} a_1 \cdot q^{k-1} = q \cdot \left(\sum_{k=1}^{\infty} a_1 \cdot q^{k-1} + a_1 q^{-1}\right)  =

q \cdot S_{\infty} + a_1 .

Daí ,somando-se - q \cdot S_{\infty} em ambos membros , temos

S_{\infty} + (- q \cdot S_{\infty})  = q \cdot S_{\infty} + a_1 + ( - q \cdot S_{\infty}) = a_1 .

Como S_{\infty} + (- q \cdot S_{\infty}) = S_{\infty}(1 -q) ; desde que 1 - q \neq 0 ,ou seja , q \neq 1 . Podemos ,multiplicar ambos membros por 1/(1-q) obtendo ,


(**)   S_{\infty} = \frac{a_1}{1-q} .

Aplicação para o exercício :

Condições para aplicarmos a fórmula (**) :

Como foi dado que q = sin^2(\theta) e a_1 = cot(\theta) = \frac{cos(\theta)}{sin(\theta)} ,temos então que obrigatoriamente sin^2(\theta) \neq 1 e sin(\theta) \neq 0.

Assim , \theta é um valor fixado no intervalo \left(0,\pi/2\right) e não \left[0,\pi/2\right] .Com estas condições podemos aplicar a fórmula (**) ,segue

S_{\infty} = \frac{cot(\theta) }{1-sin^2(\theta) } que devido a sin^2(\theta) + cos^2(\theta) = 1 ,

S_{\infty} = \frac{cot(\theta) }{1-sin^2(\theta) } = \frac{cot(\theta) }{cos^2(\theta)} = \frac{1}{cos(\theta)} \cdot \frac{1}{sin(\theta)}  = sec(\theta) \cdot csc(\theta) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59