• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[progressao aritmetica] espero que possam me ajudar

[progressao aritmetica] espero que possam me ajudar

Mensagempor kdeyse » Dom Jan 27, 2013 17:17

Considere os dados apresentados na tabela a seguir, obtidos pelo movimento de um automóvel que se desloca em
linha reta ao longo de uma rodovia.
t(s) 2 5 x 11
d(m) 16 y 196 484
A distância (d), percorrida pelo automóvel, partindo do repouso, é diretamente proporcional ao quadrado do tempo (t).
Considerando-se os valores dados na tabela em questão, o valor de é:
a)47.
b)107.
c)117.
d)97.

na verdade nao tenho certeza se é progressao aritmetica, mas acredito que seja...seguindo essa ideia eu achei o r que é 3, logo x=8 , mas nao consigo achar y... quem sabe eu tenha feito td errado e isso nem seja uma PA, bom, espero que possam me ajudar.
kdeyse
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Jan 22, 2013 01:53
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [progressao aritmetica] espero que possam me ajudar

Mensagempor Russman » Dom Jan 27, 2013 18:51

Se a distância percorrida é proporcional ao quadrado do tempo então você pode supor que

d = a + bt + ct^2, onde a, b e c são constantes.

Note que essa equação é mais conhecida como d(t) = d_o + v_0 t + (a/2)t^2, que é a lei de movimento de um móvel acelerado de a.

Como ele parte do repouso temos v_0 = 0. Supondo que comecemos a contar a distancia a partir de d_0 = 0, então

d = c.t^2

e precisamos somente calcular a constante c para determinar a lei da função.

Veja que para t=2 temos d=16, de forma que 16 = c.2^2 e , portanto, c = 4.

Logo, d = 4t^2 e assim voce pode calcular tanto x quanto y.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [progressao aritmetica] espero que possam me ajudar

Mensagempor kdeyse » Seg Jan 28, 2013 12:39

Oi, obrigado pela ajuda...olhe como fiz:
d=4.{t}^{2}[tex]
t=6
Ou seja x=6
Entao :
d=4.25
d=100 ou y=100
Entao x+y=106
Só q 106 nao tem nas alternativas... sera q cometi algum erro?
No gabarito diz q 107 a resposta correta.
kdeyse
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Jan 22, 2013 01:53
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59