• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Progressão Geométrica] Questão interessante.

[Progressão Geométrica] Questão interessante.

Mensagempor Russman » Qui Jan 17, 2013 19:19

Achei a questão abaixo interessante principalmente pelo dever de interpretar bem o enunciado e pensei em compartilhar com vocês.

PG.gif
PG.gif (25.21 KiB) Exibido 1911 vezes
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Progressão Geométrica] Questão interessante.

Mensagempor ant_dii » Sex Jan 18, 2013 03:03

Bom,
a função que governa este crescimento é dada fazendo o seguinte: t=tempo em horas e f(t)=numero de bactérias no tempo t
para t temos f(t)
0          \rightarrow                 10
12         \rightarrow                 20
24         \rightarrow                 40

e assim por diante. Toda função exponencial é dada por f(x)=a \cdot b^x.

Fazendo então
f(0)=a \cdot b^0=10 \Rightarrow a=10

f(12)=a \cdot b^{12} = 20 \Rightarrow 10b^{12}=20 \Rightarrow b^{12}=2 \Rightarrow b=2^{\frac{1}{12}}

temos f(t)=10 \cdot 2^{\frac{1}{12}t}

Como se quer saber em 7 dias e dobra a população a cada doze horas, teremos 24*7=168. Então t=168, logo

f(168)=10 \cdot 2^{\frac{1}{12}168}=10 \cdot 2^{14}...

Colocando

10 \cdot 2^{14}=x
teremos

\log{(10 \cdot 2^{14})}= \log{x} \Rightarrow \log{10}+\log{2^{14}} = \log{x} \Rightarrow 1+14\cdot \log{2}=\log{x}

utilizando a aproximação dada teremos

1+14 \cdot 0,3 =\log{x} \Rightarrow 5,2=\log{x} \Rightarrow 10^{5,2}=x

O que indica que o número de bactérias, decorrida uma semana exata e desconsiderando qualquer outro fator, estará entre 10^{5} e
10^{5,5}.
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: [Progressão Geométrica] Questão interessante.

Mensagempor Russman » Sex Jan 18, 2013 20:05

Isso mesmo, amigo. :y:
Boa resolução.

Eu comentei sobre o enunciado pois muita gente errou essa questão por fazer confusão na contagem do tempo.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59