• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Progressão Geométrica]

[Progressão Geométrica]

Mensagempor JU201015 » Dom Nov 18, 2012 22:55

Considerando uma infinidade de quadrados de lados medindo 1, \frac{1}{\sqrt[]{2}},\frac{1}{\sqrt[]{{2}^{2}}}, \frac{1}{\sqrt[]{{2}^{3}}}..... em cm, é correto afirmar que a soma das áreas de todos esses quadrados é, em cm², igual a
a)1/4
b)1/2
c)4
d)2
Eu percebi que é soma de PG infinita, mas não consigo achar Q. Me ajudem?
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Progressão Geométrica]

Mensagempor MarceloFantini » Dom Nov 18, 2012 23:34

Se o lado do quadrado é L_n = \frac{1}{2^{\frac{n}{2}}}, então sua área será (L_n)^2 = \left( \frac{1}{2^{\frac{n}{2}}} \right)^2 = \frac{1}{2^n}.

Logo terá uma nova progressão geométrica infinita 1, \frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \ldots. Agora a razão será \frac{1}{2}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Progressão Geométrica]

Mensagempor JU201015 » Seg Nov 19, 2012 12:43

MarceloFantini escreveu:Se o lado do quadrado é L_n = \frac{1}{2^{\frac{n}{2}}}, então sua área será (L_n)^2 = \left( \frac{1}{2^{\frac{n}{2}}} \right)^2 = \frac{1}{2^n}.

Logo terá uma nova progressão geométrica infinita 1, \frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \ldots. Agora a razão será \frac{1}{2}.


Obrigada! Já fiz os cálculos e consegui chegar na resposta que é 2.
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59