• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Progressão Geométrica]

[Progressão Geométrica]

Mensagempor JU201015 » Dom Nov 18, 2012 22:55

Considerando uma infinidade de quadrados de lados medindo 1, \frac{1}{\sqrt[]{2}},\frac{1}{\sqrt[]{{2}^{2}}}, \frac{1}{\sqrt[]{{2}^{3}}}..... em cm, é correto afirmar que a soma das áreas de todos esses quadrados é, em cm², igual a
a)1/4
b)1/2
c)4
d)2
Eu percebi que é soma de PG infinita, mas não consigo achar Q. Me ajudem?
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Progressão Geométrica]

Mensagempor MarceloFantini » Dom Nov 18, 2012 23:34

Se o lado do quadrado é L_n = \frac{1}{2^{\frac{n}{2}}}, então sua área será (L_n)^2 = \left( \frac{1}{2^{\frac{n}{2}}} \right)^2 = \frac{1}{2^n}.

Logo terá uma nova progressão geométrica infinita 1, \frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \ldots. Agora a razão será \frac{1}{2}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Progressão Geométrica]

Mensagempor JU201015 » Seg Nov 19, 2012 12:43

MarceloFantini escreveu:Se o lado do quadrado é L_n = \frac{1}{2^{\frac{n}{2}}}, então sua área será (L_n)^2 = \left( \frac{1}{2^{\frac{n}{2}}} \right)^2 = \frac{1}{2^n}.

Logo terá uma nova progressão geométrica infinita 1, \frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \ldots. Agora a razão será \frac{1}{2}.


Obrigada! Já fiz os cálculos e consegui chegar na resposta que é 2.
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)