Em uma progressão geométrica de seis termos e razão 2, a diferença entre os dois últimos termos é 48.
Qual é o primeiro termo dessa progressão?
(A) 3
(B) 6
(C) 12
(D) 14
(E) 28
A resposta é letra (A), como será que se chega ao resultado? alguém saberia?

é dado por
onde
é a sua razão.
.
. Assim,
.
.
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)