-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por admin » Seg Mar 10, 2008 02:30
Olá Ananda!
Também há um outro colaborador pensando em sua dúvida.
Enquanto isso, verifique sua passagem.

Como exemplo da continuação da soma de termos, eu encontrei:

Até mais.
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Ananda » Seg Mar 10, 2008 10:23
Bom dia!
É diferente porque entra naquela resolução com binômio, né?
Vou tentar hoje resolver novamente para ver se enxergo algo novo!
Grata!
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por admin » Seg Mar 10, 2008 11:38
Bom dia, Ananda.
Então, eu percebi que você considerou igual, mas a relação fundamental da trigonometria é:

Esta igualdade é falsa:

Eu também já desenvolvi este binômio do terceiro membro, mas não obtive sucesso na simplificação da equação:

-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por admin » Seg Mar 10, 2008 13:05
Ananda, uma outra forma que pensei para lidar com este expoente 10, é utilizar esta redução de potência, seguida pela expansão binomial:

E quando as potências em cosseno aparecerem, utilizar esta outra redução:

Pois

Mas este processo é desanimador, ainda prefiro tentar buscar um caminho melhor.
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por Ananda » Seg Mar 10, 2008 13:42
Se bem que na prova real não daria certo...
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por Ananda » Seg Mar 10, 2008 13:43
Opa, dá sim!
Cos tem que ser zero, certo?
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por Ananda » Seg Mar 10, 2008 13:46
Exatamente!
E eu me enrolei com a prova real e por fim, vi que estava dando:
0 = 1
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por Ananda » Seg Mar 10, 2008 13:55
Partindo daí, só cheguei a:

Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por admin » Seg Mar 10, 2008 14:09
O que dá uma equação de grau 6 em

.
Mas, partindo de outro desenvolvimento, eu já tinha obtido outra equação de grau 6 em

:

Fazendo uma substituição:


-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Ananda » Seg Mar 10, 2008 14:29
E como se resolveria isso?
Em programa de função, acho a resposta, mas como se faz no lápis?
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por Ananda » Seg Mar 10, 2008 15:38
Hmmm, grata...
De qualquer modo, a resolução desse exercício foi mais uma "curiosidade", já que não pretendo prestar ITA.
Mas conseguindo fazer todos ou quase todos os exercícios de cada capítulo, acredito que estarei mais apta a fazer as provas das faculdades que prestarei.
Mais uma vez, grata!
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por admin » Qua Mar 12, 2008 16:46
Olá Ananda, boa tarde!
Hoje pensei em um modo mais simples de fazer, sem argumentos do cálculo, utilizando o fato de o conjunto imagem da função seno ser limitado entre -1 e 1 e as definições da progressão geométrica, veja:
Nossa PG:

Com primeiro termo:

E razão:

Tal que

(soma dos 5 primeiros termos)
A conjunto imagem da função seno é limitado:

Como o quadrado de um número real nunca é negativo, segue que:

Considerando a razão que é

, vamos listar todas as possibilidades de classificação desta PG:
Caso I) Se

Implicaria uma PG constante com termos nulos.
Caso II) Se

Implicaria uma PG decrescente com cada termo menor que o anterior.
Caso III) Se

Implicaria uma PG constante com termos iguais e não nulos.
Agora, analisemos cada caso:
Caso I) Não convém, pois teríamos:
PG =

Com

.
Caso II) Como

Segue que:




E então:


Que também não convém, pois teríamos:
Caso III) É o caso restante.
Tanto que para

, vale a equação trigonométrica da soma de termos da PG:

Logo, de fato,

.
E segue que:



ou

Portanto, o conjunto-solução é:

-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Ananda » Qui Mar 13, 2008 11:10
Bom dia, Fábio!
Grata pela resolução mais prática!
Fico alegre de por enquanto estar sem novas dúvidas!
Grata mais uma vez!
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Progressao] série geometrica X progressao geometrica?
por aajunim » Seg Mar 18, 2013 11:19
- 2 Respostas
- 4001 Exibições
- Última mensagem por aajunim

Ter Mar 19, 2013 11:44
Progressões
-
- Progressão aritmética e progressão geométrica
por Danilo Dias Vilela » Sex Mar 12, 2010 13:41
- 1 Respostas
- 4497 Exibições
- Última mensagem por thadeu

Sex Mar 12, 2010 17:36
Progressões
-
- Progressão Geométrica
por nicecaps » Seg Mar 22, 2010 11:37
- 2 Respostas
- 4040 Exibições
- Última mensagem por nicecaps

Ter Mar 23, 2010 09:45
Progressões
-
- Progressão Geométrica
por Jessie » Qui Abr 29, 2010 17:49
- 1 Respostas
- 2739 Exibições
- Última mensagem por Elcioschin

Qui Abr 29, 2010 20:12
Pedidos
-
- Progressão Geométrica .-.
por Carolziiinhaaah » Seg Jun 14, 2010 13:56
- 3 Respostas
- 5785 Exibições
- Última mensagem por Carolziiinhaaah

Seg Jun 14, 2010 15:35
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.