• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Indução Matemática

Indução Matemática

Mensagempor MateusDantas1 » Dom Mar 04, 2012 13:00

Para cada n inteiro positivo, os números de Lucas L_n são definidos por:

L_{n+2}=L_{n+1}+L_n,          L_1=1,      L_0=2.

a. Prove que, para todo n maior ou igual a 0, L_n=a^n + b^n, onde a= (1+ \sqrt5) \div2 e b =(1-\sqrt5) \div2

b. Prove que a^{n-1}\sqrt5-(L_{n-1})\div(a)é um número de Lucas, para cada n>0

c. Prove que L_n + L_{n+3}=2L{n+2}, para todo n maior ou igual a 0.


Não tenho ideia de como se faz isso se alguém puder me ajudar, obrigado.
MateusDantas1
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Fev 16, 2012 14:51
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Indução Matemática

Mensagempor LuizAquino » Ter Mar 06, 2012 01:50

MateusDantas1 escreveu:Para cada n inteiro positivo, os números de Lucas L_n são definidos por:

L_{n+2}=L_{n+1}+L_n, L_1=1, L_0=2.

a. Prove que, para todo n maior ou igual a 0, L_n=a^n + b^n, ondea= (1+ \sqrt{5}) \div 2 e b =(1-\sqrt{5}) \div 2

b. Prove que a^{n-1}\sqrt{5}-(L_{n-1})\div(a) é um número de Lucas, para cada n>0

c. Prove que L_n + L_{n+3}=2L{n+2}, para todo n maior ou igual a 0.


MateusDantas1 escreveu:Não tenho ideia de como se faz isso


Primeiro, veja alguns números de Lucas:

L_0 = 2

L_1 = 1

L_2 = L_1 + L_0 = 1 + 2 = 3

L_3 = L_2 + L_1 = 3 + 1 = 4

L_4 = L_3 + L_2 = 4 + 3 = 7

L_5 = L_4 + L_3 = 7 + 4 = 11

E assim por diante.

MateusDantas1 escreveu:a. Prove que, para todo n maior ou igual a 0, L_n=a^n + b^n, onde a= (1+ \sqrt{5}) \div 2 e b =(1-\sqrt{5}) \div 2


Façamos n = 0.

Pela definição, temos que L_0 = 2.

Além disso, temos que:

a^0 + b^0 = \left(\dfrac{1+\sqrt{5}}{2}\right)^0 + \left(\dfrac{1-\sqrt{5}}{2}\right)^0 = 1 + 1 = 2

Sendo assim, temos que:

L_0 = a^0 + b^0

Ou seja, a relação é válida para n = 0.

Vamos supor que a relação é válida até n. Ou seja, vamos supor que:

L_n = a^n + b^n

Desejamos provar que ela será válida para n + 1. Isto é, desejamos provar que:

L_{n+1} = a^{n+1} + b^{n+1}

Vamos começar desenvolvendo L_{n+1} .

Usando a definição, temos que:

L_{n+1} = L_{n} + L_{n-1}

Usando a suposição de que a relação é válida até n, podemos dizer que:

L_{n+1} = a^n + b^n  + a^{n-1} + b^{n-1}

= \left(\dfrac{1+\sqrt{5}}{2}\right)^n + \left(\dfrac{1-\sqrt{5}}{2}\right)^n + \left(\dfrac{1+\sqrt{5}}{2}\right)^{n-1} + \left(\dfrac{1-\sqrt{5}}{2}\right)^{n-1}

= \left(\dfrac{1+\sqrt{5}}{2}\right)^n\left[1 + \left(\dfrac{1+\sqrt{5}}{2}\right)^{-1}\right] + \left(\dfrac{1-\sqrt{5}}{2}\right)^n\left[1 + \left(\dfrac{1-\sqrt{5}}{2}\right)^{-1}\right]

= \left(\dfrac{1+\sqrt{5}}{2}\right)^n\left(1 + \dfrac{2}{1+\sqrt{5}}\right) + \left(\dfrac{1-\sqrt{5}}{2}\right)^n\left(1 + \dfrac{2}{1-\sqrt{5}}\right)

= \left(\dfrac{1+\sqrt{5}}{2}\right)^n\left(1 + \dfrac{2}{1+\sqrt{5}}\cdot \frac{1-\sqrt{5}}{1-\sqrt{5}}\right) + \left(\dfrac{1-\sqrt{5}}{2}\right)^n\left(1 + \dfrac{2}{1-\sqrt{5}}\cdot \frac{1+\sqrt{5}}{1+\sqrt{5}}\right)

= \left(\dfrac{1+\sqrt{5}}{2}\right)^n\left(1 + \dfrac{2 - 2\sqrt{5}}{1^2 - \sqrt{5}^2}\right) + \left(\dfrac{1-\sqrt{5}}{2}\right)^n\left(1 + \dfrac{2 + 2\sqrt{5}}{1^2-\sqrt{5}^2}\right)

= \left(\dfrac{1+\sqrt{5}}{2}\right)^n\left(1 + \dfrac{2 - 2\sqrt{5}}{-4}\right) + \left(\dfrac{1-\sqrt{5}}{2}\right)^n\left(1 + \dfrac{2 + 2\sqrt{5}}{-4}\right)

= \left(\dfrac{1+\sqrt{5}}{2}\right)^n\left(\dfrac{- 4 + 2 - 2\sqrt{5}}{-4}\right) + \left(\dfrac{1-\sqrt{5}}{2}\right)^n\left(\dfrac{-4 + 2 + 2\sqrt{5}}{-4}\right)

= \left(\dfrac{1+\sqrt{5}}{2}\right)^n\left(\dfrac{- 2 - 2\sqrt{5}}{-4}\right) + \left(\dfrac{1-\sqrt{5}}{2}\right)^n\left(\dfrac{-2 + 2\sqrt{5}}{-4}\right)

= \left(\dfrac{1+\sqrt{5}}{2}\right)^n\left(\dfrac{1 + \sqrt{5}}{2}\right) + \left(\dfrac{1-\sqrt{5}}{2}\right)^n\left(\dfrac{1 - \sqrt{5}}{2}\right)

= \left(\dfrac{1+\sqrt{5}}{2}\right)^{n+1} + \left(\dfrac{1-\sqrt{5}}{2}\right)^{n+1}

= a^{n+1} + b^{n+1}

Em resumo, obtemos que:

L_{n+1} = a^{n+1} + b^{n+1}

Sendo assim, provamos por indução que para todo n maior ou igual a zero é válido que L_n=a^n + b^n , onde a = \dfrac{1+\sqrt{5}}{2} e b = \dfrac{1- \sqrt{5}}{2} .

Agora tente fazer os outros quesitos.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?