por ihavenokia » Qua Out 26, 2011 15:12
Olá! Não estou percebendo como calcular os casos favoraveis deste problema
http://imageshack.us/photo/my-images/207/senome.png/os casos possiveis sao 12! ?
Obrigado pelas respostas.
-
ihavenokia
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Out 26, 2011 15:07
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Andamento: cursando
por Neperiano » Qua Out 26, 2011 17:46
Ola
Monte 12 lugares e va largando quantos podem sentar nesse lugar
12(qualquer um pode sentar na primera) x 6 (tenque ser uma rapariga ou um rapaz) x 5 (não pode repetir a mesma pessoa da esquerda)
E assim sucessivamente, não sei se ficou claro
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por jose henrique » Qua Out 26, 2011 21:05
olá boa noite!!
trata de um exercício de permutação de elementos circulares, entretanto ele pede para que a resposta seja dada em porcentagem.
quantos eventos possíveis temos:
PC= (12-1)!= 39916800
Agora vamos ao evento que nos interessa que é quando os meninos estares entre as meninas, ou seja pessoas do mesmo sexo não podem sentar juntas.
são seis meninas e desta forma elas dentro dessa roda poderíam permutar:
PC= (6-1)!= 5! = 120
então poderíamos posicionar estas meninas nessa roda 120 maneiras diferentes.
como os meninos irão ficar entre as meninas então teríamos 6!= 720
pelo principio multiplicativo, teríamos: 120X720= 86400
bem o exercício pede que a resposta seja colocada em porcentagem, correto? então:

.
Você tem o gabarito da questão, confere aí se estar certo e depois posta. um abraço!!
-
jose henrique
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qui Ago 12, 2010 20:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: outros
- Andamento: formado
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Arranjo
por Pri Ferreira » Qua Mar 21, 2012 13:34
- 3 Respostas
- 2389 Exibições
- Última mensagem por LuizAquino

Seg Abr 09, 2012 23:30
Estatística
-
- Arranjo ! URGENTEEEEE
por my2009 » Qui Jun 03, 2010 19:08
- 3 Respostas
- 1509 Exibições
- Última mensagem por my2009

Sex Jun 04, 2010 23:07
Estatística
-
- Arranjo ou combinação?
por cristina » Sex Ago 27, 2010 11:41
- 3 Respostas
- 2198 Exibições
- Última mensagem por profmatematica

Sáb Ago 28, 2010 05:08
Estatística
-
- Arranjo ou Combinação?
por gustavowelp » Sex Nov 19, 2010 07:22
- 2 Respostas
- 1314 Exibições
- Última mensagem por gustavowelp

Sex Nov 19, 2010 13:36
Estatística
-
- Arranjo ou combinação??
por matpet92 » Dom Fev 12, 2012 12:40
- 2 Respostas
- 1360 Exibições
- Última mensagem por matpet92

Dom Fev 12, 2012 17:49
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.