• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressão aritimetica

Progressão aritimetica

Mensagempor Carlos NI » Qua Abr 22, 2009 23:51

Qual é o centésimo numero par.
Resposta correta?

an=100
a1=2
n=100
r=2

a100=2+(100-1).2
a100=2+99.2
a100=2+198
a100=200


Ache o sexagésimo numero impar.
Resposta correta?

an=69
a1=1
n=69
r=2

a69=1+(69-1).2
a69=1+68.2
a69=1+136
a69=137
Carlos NI
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Abr 18, 2009 20:53
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Progressão aritimetica

Mensagempor Molina » Qui Abr 23, 2009 00:42

Boa noite, Carlos.

Só um detalhe: sexagésimo = 60º.
Logo n = 60.

Do resto tá tudo certo.
Só faça as devidas alterações na segunda PA.

Abraços! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}