por jessicaccs » Sex Mar 25, 2011 11:52
A questão é a seguinte:
Se numa PA a soma dos
m primeiros termos é igual à soma dos
n primeiros termos,

, mostre que a soma
m+n primeiros termos é igual a zero.
Considerei que m<n e desenvolvi

. Consegui achar a seguinte relação:

(I)
Em seguida desenvolvi

No final de tudo, joguei (I) nessa soma e achei:

Não deu zero. Não sei se errei em alguma coisa durante a "sopa de letras" que fiz.
Depois tentei achar alguma outra relação.
Pensei o seguinte:
Se m<n, então, tenho que

.
Do enunciado eu posso tirar que:

E, portanto:

Logo:

e,

Desenvolvendo-o, consegui achar a seguinte relação:

Mas, não consegui chegar a nenhum lugar com ela, também.
Obrigada.
-
jessicaccs
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Ter Out 13, 2009 19:13
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Efomm
- Andamento: cursando
por Elcioschin » Sex Mar 25, 2011 14:55
Como você não mostrou o desenvolvimento, não dá para saber onde você errou.
Veja a solução completa, considerando a1 = a como 1º termo
am = a + (m - 1)*r -----> Sm = (a + am)*m/2 ----> Sm = (2a + r*m - r)*m/2 ----> Sm = (2a*m + r*m² - r*m)/2
an = a + (n - 1)*r ------> Sn = (a + an)*n/2 ----> Sn = (2a + r*n - r)*n/2 ----> Sn = (2a*n + r*n² - r*n)/2
Igualando ----> (2a*m + r*m² - r*m)/2 = (2a*n + r*n² - r*n)/2 ----> r*m² - r*n² - r*m + r*n + 2a*m - 2a*n = 0
r*(m² - n²) - r*(m - n) + 2a*(m - n) = 0 ----> r*(m + n)*(m - n) - r*(m - n) + 2a*(m - n) = 0 ----> [r*(m + n - 1) - 2a]*(m - n) = 0
Como m <> n podemos dividir por m - n ----> r*(m + n - 1) + 2a = 0 ----> r*(m + n - 1) = - 2a ----> (I)
am+n = a + (m + n - 1)*r -----> Sm+n = [(2a + (m + n - 1)*r]/2 ----> (II)
Substituindo I em II ----> Sm+n = (2a - 2a)*r*n/2 -----> Sm+n = 0
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- DEMONSTRAÇÃO
por arima » Seg Nov 08, 2010 08:40
- 8 Respostas
- 5605 Exibições
- Última mensagem por roseli

Qua Nov 10, 2010 21:03
Álgebra Elementar
-
- Demonstração
por Lorettto » Qui Dez 16, 2010 23:03
- 3 Respostas
- 2102 Exibições
- Última mensagem por Elcioschin

Seg Dez 20, 2010 12:39
Álgebra Elementar
-
- Demonstração
por Pedro2 » Sáb Mar 12, 2011 15:38
- 1 Respostas
- 1827 Exibições
- Última mensagem por Guill

Sex Abr 20, 2012 16:01
Matrizes e Determinantes
-
- Demonstração
por tigre matematico » Dom Nov 06, 2011 12:05
- 0 Respostas
- 999 Exibições
- Última mensagem por tigre matematico

Dom Nov 06, 2011 12:05
Funções
-
- Demonstração
por Well » Qua Mar 28, 2012 21:48
- 3 Respostas
- 1678 Exibições
- Última mensagem por LuizAquino

Qui Mar 29, 2012 12:29
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.