• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Triângula ABC

Triângula ABC

Mensagempor idacil » Sáb Fev 05, 2011 20:06

Questão:

Em um triângulo ABC, as medidas que partem de A e de B são perpendiculares. Se BC = 8cm e AC = 6cm. Calcule AB.
Sugestão: Recorde as propriedades das medianas.

Eu Resolvi, Mas gostaria que dessem uma olhada e falassem se ta certo ou não.

Resposta:

AG/GI =2

AB² + AC² = 2 BI² + 2AI²
(AB)²+ 6² = (2.4)² + 2.AI²
(AB)² + 36 = 64 +2.AI²
(AB)² = 64 – 36 +2.AI²
(AB)²= 28 + 2AI²
idacil
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Fev 04, 2011 14:49
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Triângulo ABC

Mensagempor Emilia » Seg Fev 07, 2011 14:34

Resolvi desta forma, espero que esteja certo.




G = Baricentro com AM _|_ BN em G, AG = 2•GM = 2/3•X e BG = 2•GN = 2/3•Y


Nos triângulos retângulos MBG e NAG, Pitágoras, temos:

MG² + GB² = MB² e NG² + AG² = NA²

(1/3•x)² + (2/3•y)² = 4² e (1/3•y)² + (2/3•x)² = 3²

x²/9 + 4y²/9 = 16 e y²/9 + 4x²/9 = 9

x² + 4y² = 144 e 4x² + y² = 81

x² = 12 e y² = 33



No triângulo retângulo ABG:

AG²+BG²= AB²

AB² = (2/3•x)² + (2/3•y)²

AB² = 4/9•(x² + y²)

AB² = 4/9• (12 + 33)

AB² = 4/9 • 45 = 20

AB = V20

AB = 2• V5
Emilia
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Ter Nov 30, 2010 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Progressões

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.