• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Triângulo retângulo

Triângulo retângulo

Mensagempor DanielFerreira » Qua Jul 29, 2009 15:38

(UF-SE) Se os raios solares formam um ângulo ? com o solo, qual é, aproximadamente, o comprimento da sombra de um edifício com 10m de altura?
a) 16,6m
b) 15,5m
c) 14,4m
d) 13,3m
e) 12,2m

dado: sen a = 3/5
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Triângulo retângulo

Mensagempor Felipe Schucman » Qua Jul 29, 2009 19:01

Desenhado a figura temos

Oposto a ?=10
Hipotenusa= H

Então sen ?=10/h=3/5--->h=16,66666

Lado da sombra= S

10 ^ 2 + S ^ 2 = 16,66666 ^ 2 ----> 13,33333333333333333333333333333 ---> aproximadamente....

Espero ter ajudado,

Um abraço!
Felipe Schucman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 52
Registrado em: Ter Jul 28, 2009 17:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia e Direito
Andamento: cursando

Re: Triângulo retângulo

Mensagempor Cleyson007 » Qui Jul 30, 2009 11:55

Olá Danjr5!

Segue resolução ilustrada do problema:

Imagem

O que está de frente para o ângulo é chamado de: Cateto oposto (logo: Co = 10m)

O que está em frente ao ângulo reto é chamado de hipotenusa (Note que você não tem o valor da hipotenusa).

Você quer encontrar o valor x (cateto adjacente)

Sabe-se que: sen\alpha=\frac{cateto-oposto}{hipotenusa}

\frac{3}{5}=\frac{10}{x}

Multiplicando cruzado: x=16,66666667m

Espero ter ajudado!

Comente qualquer dúvida, :y: ?

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Triângulo retângulo

Mensagempor Felipe Schucman » Qui Jul 30, 2009 14:15

Bom dia Cleyson007,

Mas encontrei erros em sua resolução sen é cateto oposto/hipotenusa.....no caso o que você fez foi oposto/adjacente de forma que a relação da razão que você estabeleceu com a razão do seno é desse angulo dado é impossivel.

Se estiver errado me me diga! Espero ter ajudado!

Um abraço!
Felipe Schucman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 52
Registrado em: Ter Jul 28, 2009 17:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia e Direito
Andamento: cursando

Re: Triângulo retângulo

Mensagempor Molina » Qui Jul 30, 2009 15:38

Boa tarde.

Como houve divergência no resultado, resolvi fazer também.
E cheguei em x\approx 13,3


Abraços, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Triângulo retângulo

Mensagempor Cleyson007 » Qui Jul 30, 2009 17:22

Boa tarde Felipe, tudo bem?

Realmente... nem dá para acreditar que cometi um erro desses...

Vamos lá:

tg\alpha=\frac{{c}_{o}}{{c}_{a}}

Pela Relação Fundamental da Trigonometria, temos: {sen}^{2}\alpha+{cos}^{2}\alpha=1

Estou encontrando: cos\alpha=\frac{4}{5}

tg\alpha=\frac{sen\alpha}{cos\alpha}

Logo, tg\alpha=\frac{3}{4}

Resolvendo: \frac{3}{4}=\frac{10}{x}

Portanto, x=13,3333

--> A resposta está igual a do Molina :-P

Espero ter ajudado.

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?