por DanielFerreira » Dom Abr 29, 2012 21:15
Se

calcule

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Russman » Dom Abr 29, 2012 21:58
A tangente da soma de dois arcos é dada pela formula

.
Agora troque b por b+c. Então

"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- TANGENTE
por MERLAYNE » Ter Abr 03, 2012 10:06
- 1 Respostas
- 1277 Exibições
- Última mensagem por MarceloFantini

Ter Abr 03, 2012 14:51
Trigonometria
-
- TANGENTE
por MERLAYNE » Ter Abr 03, 2012 10:14
- 1 Respostas
- 1130 Exibições
- Última mensagem por MarceloFantini

Ter Abr 03, 2012 14:50
Trigonometria
-
- [Eq. da Tangente] x^(2/3)+y^(2/3)=1
por ajurycaba » Ter Abr 28, 2015 14:15
- 1 Respostas
- 1366 Exibições
- Última mensagem por young_jedi

Ter Abr 28, 2015 22:36
Cálculo: Limites, Derivadas e Integrais
-
- Tangente Inversa
por xducke » Qua Jul 22, 2009 02:34
- 1 Respostas
- 3244 Exibições
- Última mensagem por xducke

Qua Jul 22, 2009 18:19
Trigonometria
-
- Função com Tangente
por rafacosme » Qua Jun 16, 2010 15:25
- 2 Respostas
- 1773 Exibições
- Última mensagem por rafacosme

Qua Jun 16, 2010 15:59
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.