• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Trignometria] Fórmula Fundamental da Trignometria

[Trignometria] Fórmula Fundamental da Trignometria

Mensagempor rola09 » Dom Mar 18, 2012 15:12

Resolvi este exercício e queria perguntar e partilhar se estou errado em alguma parte das questões.

Considere a seguinte expressão:

B\left(\alpha \right)=-sen\left(5\pi-\alpha \right)+tg\alpha-2cos\left(\frac{5}{2}\pi-\alpha \right)+\frac{cos\left(\frac{5}{2}\pi-\alpha \right)}{sen\left(\frac{3}{2}\pi+\alpha \right)}

1 - Mostre que B\left(\alpha \right)=-3sen\left(\alpha \right).

B\left(\alpha \right)=-sen\left(5\pi-\alpha \right)+tg\left(\alpha \right)-2cos\left(\frac{5}{2}\pi-\alpha \right)+\frac{cos\left(\frac{5}{2}\pi-\alpha \right)}{sen\left(\frac{3}{2}\pi+\alpha \right)}\Leftrightarrow B\left(\alpha \right)=-sen\left(\pi-\alpha \right)+tg\left(\alpha \right)-2cos\left(\frac{\pi}{2}-\alpha \right)+\frac{cos\left(\frac{\pi}{2}-\alpha \right)}{sen\left(\frac{3\pi}{2}+\alpha \right)}\Leftrightarrow B\left(\alpha \right)=-sen\left(\alpha \right)+tg\left(\alpha \right)-2sen\left(\alpha \right)-\frac{sen\alpha}{cos\alpha}\Leftrightarrow B\left(\alpha \right)=-sen\left(\alpha \right)+tg\left(\alpha \right)-2sen\left(\alpha \right)-tg\left(\alpha \right)\Leftrightarrow B\left(\alpha \right)=-3sen\left(\alpha \right)


2 - Sabendo que tg\left(\alpha \right)=-2 e \alpha \in \left]-\frac{\pi}{2};\frac{\pi}{2} \right[ calcule o valor exato da expressão B\left(\alpha \right).

Aplicando a fórmula {tg}^{2}\alpha+1=\frac{1}{{cos}^{2}\alpha}

{\left(-2 \right)}^{2}+1=\frac{1}{{cos}^{2}\alpha}\Leftrightarrow cos\alpha=\pm\frac{\sqrt{5}}{5}. Como \alpha\in\left]-\frac{\pi}{2},\frac{\pi}{2} \right[ sabemos que cos\alpha=\frac{\sqrt{5}}{5}. Então, como tg\alpha=\frac{sen\alpha}{cos\alpha} concluímos que

-2=\frac{sen\alpha}{\frac{\sqrt{5}}{5}}\Leftrightarrow sen\alpha=-\frac{2\sqrt{5}}{5}

Neste caso B\left(\alpha \right)=-3*\left(-\frac{2\sqrt{5}}{5} \right)\Leftrightarrow B\left(\alpha \right)=\frac{6\sqrt{5}}{5}


3 - Resolva em , a condição B\left(\alpha \right)=3cos\left(-\alpha \right).

B\left(\alpha \right)=3cos\left(-\alpha \right)\Leftrightarrow -3sen\alpha=3cos\alpha\Leftrightarrow sen\alpha=-cos\alpha\Leftrightarrow \alpha=

-\frac{\pi}{4}+\kappa\pi\kappa \in Z
rola09
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Seg Mar 12, 2012 15:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: Cientifico-Natural
Andamento: cursando

Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.