por Pre-Universitario » Qua Ago 17, 2011 18:14
Um homem ver uma torre sob um angulo de 50 Graus, andou 246 unidades
para trás e novamente viu a torre, agora sob um angulo de 25 Graus.
Supondo esses dados qual a latura da torre ?
Bom! fiz dessa forma e tambem análogo a outros que mandei
mas não tem jeito, da errada!
A forma que fiz foi a seguinte
tg

=

1,19 =

tg

=

0,46 =

Temos:

1,19 =

0,46 =

Da primeira equação temos:

=

1,19
Entroduzindo o resultado da primeira equação na segundo temos:

Mas a resposta correta tem que ser 188 unidades
Gostaria que olhasse na onde errei ou se fiz a questão
totalmete errada! Obrigado!
-
Pre-Universitario
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Sex Ago 05, 2011 17:16
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 3
- Andamento: formado
por Caradoc » Sex Ago 19, 2011 00:33
Suas contas estão certas, provavelmente essa diferença veio de algum arredondamento.
Considere tg 25º = 0,466 e você vai chegar no 188.
-
Caradoc
- Usuário Dedicado

-
- Mensagens: 37
- Registrado em: Qui Dez 16, 2010 17:17
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Pre-Universitario » Sex Ago 19, 2011 16:28
consegue chegar nos 188
valeu
-
Pre-Universitario
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Sex Ago 05, 2011 17:16
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 3
- Andamento: formado
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- altura da torre
por qscvrdxz » Ter Jun 02, 2009 19:21
- 2 Respostas
- 3384 Exibições
- Última mensagem por qscvrdxz

Ter Jun 02, 2009 23:15
Trigonometria
-
- luzes de uma torre
por junior_gyn » Seg Mai 09, 2011 14:12
- 1 Respostas
- 4010 Exibições
- Última mensagem por Pedro123

Seg Mai 09, 2011 16:25
Desafios Médios
-
- Como calcular a Torre Eiffel ?
por Hywan » Sáb Ago 17, 2013 14:03
- 0 Respostas
- 1460 Exibições
- Última mensagem por Hywan

Sáb Ago 17, 2013 14:03
Trigonometria
-
- ALTURA DO UMBIGO
por maria cleide » Dom Mai 22, 2011 19:27
- 1 Respostas
- 4156 Exibições
- Última mensagem por LuizAquino

Dom Mai 22, 2011 20:45
Geometria Plana
-
- ITA - ângulos , altura h e H
por PeterHiggs » Ter Jul 31, 2012 17:36
- 2 Respostas
- 6120 Exibições
- Última mensagem por PeterHiggs

Qua Ago 01, 2012 14:49
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.