• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Trigonometria ( Funções )

Trigonometria ( Funções )

Mensagempor gtrbarata » Ter Jul 06, 2010 20:04

Olá, meu professor deixou um exercicio para a sala tentar resolver, mais estamos com dificuldades, gostaria de uma explicação.

o enunciado é o seguinte :

Dado sec x = 9/4, sendo x<= 3pi/2 <= 2pi, determine as demais funções.
( dado secante x 9 sobre 4 x menor ou igual a 3pi sobre 2 que é menor ou igual a 2pi, determine as demais funcoes.)
gtrbarata
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Jul 06, 2010 19:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: matematica
Andamento: cursando

Re: Trigonometria ( Funções )

Mensagempor Tom » Qua Jul 07, 2010 00:39

Imagino que a pergunta seja a respeito das outras funções trigonométricas; então vamos calculá-las:

Se sec(x)=\dfrac{9}{4}, então cos(x)=\dfrac{1}{sec(x)}=\dfrac{4}{9}

Usando o Teorema Fundamental da Trigonometria, sen^2(x)+cos^2(x)=1, então sen^2(x)=\dfrac{65}{81} e assim, sen(x)=\pm\dfrac{\sqrt{65}}{9}

Mas, como x\le\dfrac{3\pi}{2} então sen(x)=\dfrac{\sqrt{65}}{9}


Como cossec(x)=\dfrac{1}{sen(x)}, temos que : cossec(x)=\dfrac{9\sqrt{65}}{65}

Além disso, tg(x)=\dfrac{sen(x)}{cos(x)}=\dfrac{\sqrt{65}}{4}

Por fim, como cotg(x)=\dfrac{1}{tg(x)}, então: cotg(x)=\dfrac{4\sqrt{65}}{65}


Eis as funções:

cos(x)=\dfrac{4}{9}

sen(x)=\dfrac{\sqrt{65}}{9}

tg(x)=\dfrac{\sqrt{65}}{4}

cotg(x)=\dfrac{4\sqrt{65}}{65}

cossec(x)=\dfrac{9\sqrt{65}}{65}

sec(x)=\dfrac{9}{4}
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: