• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Adição de Arcos

Adição de Arcos

Mensagempor Cleyson007 » Seg Mar 29, 2010 13:07

Bom dia!

Se cos\alpha=\frac{3}{5} e sen\beta=\frac{1}{3}, com \alpha pertencente ao terceiro quadrante e \beta pertencente ao segundo quadrante, calcular:

a) sen(\alpha+\beta)

b) sen(\alpha-\beta)

Calculei os valores de sen\alpha e cos\beta:

sen\alpha=\frac{4}{5}

cos\beta=\frac{2\sqrt[]{2}}{3}

Resolvendo, encontrei: sen(\alpha+\beta)=\frac{8\sqrt[]{2}+3}{15}

sen(\alpha-\beta)=\frac{8\sqrt[]{2}+3}{15}

Estou com dúvida na resposta devido falar que \alpha pertencente ao terceiro quadrante e \beta pertencente ao segundo quadrante *-)

Minha resolução está correta?

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Adição de Arcos

Mensagempor Elcioschin » Seg Mar 29, 2010 16:24

Sua solução está ERRADA

Quando vc calculou sena deve ter chegado na seguinte equação ----> sen²a = 16/5 ---> sena = 4/5

Só que vc se esqueceu que, ao extrair a raiz quadrada vc deeria obter DUAS soluções ---> sena = + 4/5 ou sena = - 4/5

O sinal depende do quadrante !!!!

O mesmo vale para cálculo do senb
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Adição de Arcos

Mensagempor Cleyson007 » Ter Mar 30, 2010 11:43

Bom dia prezado Elcio!

Realmente.. cometi esse erro!

Seria assim?

sen\alpha=\frac{-4}{5}, observando a função seno:

Imagem

No terceiro quadrante, o seno recebe valor negativo.

Quanto ao cos\beta, observando a função cosseno:

Devido \beta pertencer ao segundo quadrante, deverá ser negativo:

Imagem

Caro Elcio, o valor de sen(\alpha+\beta), será: \frac{8.\sqrt[]{2}+3}{15}?

Antecipo agradecimentos.

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.